Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{7x}-\sqrt{5}\right)^{2}=\left(\sqrt{3x}\right)^{2}
Square both sides of the equation.
\left(\sqrt{7x}\right)^{2}-2\sqrt{7x}\sqrt{5}+\left(\sqrt{5}\right)^{2}=\left(\sqrt{3x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7x}-\sqrt{5}\right)^{2}.
7x-2\sqrt{7x}\sqrt{5}+\left(\sqrt{5}\right)^{2}=\left(\sqrt{3x}\right)^{2}
Calculate \sqrt{7x} to the power of 2 and get 7x.
7x-2\sqrt{7x}\sqrt{5}+5=\left(\sqrt{3x}\right)^{2}
The square of \sqrt{5} is 5.
7x-2\sqrt{7x}\sqrt{5}+5=3x
Calculate \sqrt{3x} to the power of 2 and get 3x.
-2\sqrt{7x}\sqrt{5}=3x-\left(7x+5\right)
Subtract 7x+5 from both sides of the equation.
-2\sqrt{7x}\sqrt{5}=3x-7x-5
To find the opposite of 7x+5, find the opposite of each term.
-2\sqrt{7x}\sqrt{5}=-4x-5
Combine 3x and -7x to get -4x.
\left(-2\sqrt{7x}\sqrt{5}\right)^{2}=\left(-4x-5\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{7x}\right)^{2}\left(\sqrt{5}\right)^{2}=\left(-4x-5\right)^{2}
Expand \left(-2\sqrt{7x}\sqrt{5}\right)^{2}.
4\left(\sqrt{7x}\right)^{2}\left(\sqrt{5}\right)^{2}=\left(-4x-5\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\times 7x\left(\sqrt{5}\right)^{2}=\left(-4x-5\right)^{2}
Calculate \sqrt{7x} to the power of 2 and get 7x.
28x\left(\sqrt{5}\right)^{2}=\left(-4x-5\right)^{2}
Multiply 4 and 7 to get 28.
28x\times 5=\left(-4x-5\right)^{2}
The square of \sqrt{5} is 5.
140x=\left(-4x-5\right)^{2}
Multiply 28 and 5 to get 140.
140x=16x^{2}+40x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4x-5\right)^{2}.
140x-16x^{2}=40x+25
Subtract 16x^{2} from both sides.
140x-16x^{2}-40x=25
Subtract 40x from both sides.
100x-16x^{2}=25
Combine 140x and -40x to get 100x.
100x-16x^{2}-25=0
Subtract 25 from both sides.
-16x^{2}+100x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-16\right)\left(-25\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 100 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-16\right)\left(-25\right)}}{2\left(-16\right)}
Square 100.
x=\frac{-100±\sqrt{10000+64\left(-25\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-100±\sqrt{10000-1600}}{2\left(-16\right)}
Multiply 64 times -25.
x=\frac{-100±\sqrt{8400}}{2\left(-16\right)}
Add 10000 to -1600.
x=\frac{-100±20\sqrt{21}}{2\left(-16\right)}
Take the square root of 8400.
x=\frac{-100±20\sqrt{21}}{-32}
Multiply 2 times -16.
x=\frac{20\sqrt{21}-100}{-32}
Now solve the equation x=\frac{-100±20\sqrt{21}}{-32} when ± is plus. Add -100 to 20\sqrt{21}.
x=\frac{25-5\sqrt{21}}{8}
Divide -100+20\sqrt{21} by -32.
x=\frac{-20\sqrt{21}-100}{-32}
Now solve the equation x=\frac{-100±20\sqrt{21}}{-32} when ± is minus. Subtract 20\sqrt{21} from -100.
x=\frac{5\sqrt{21}+25}{8}
Divide -100-20\sqrt{21} by -32.
x=\frac{25-5\sqrt{21}}{8} x=\frac{5\sqrt{21}+25}{8}
The equation is now solved.
\sqrt{7\times \frac{25-5\sqrt{21}}{8}}-\sqrt{5}=\sqrt{3\times \frac{25-5\sqrt{21}}{8}}
Substitute \frac{25-5\sqrt{21}}{8} for x in the equation \sqrt{7x}-\sqrt{5}=\sqrt{3x}.
\frac{3}{4}\times 5^{\frac{1}{2}}-\frac{1}{4}\times 105^{\frac{1}{2}}=\frac{1}{4}\times 105^{\frac{1}{2}}-\frac{3}{4}\times 5^{\frac{1}{2}}
Simplify. The value x=\frac{25-5\sqrt{21}}{8} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{7\times \frac{5\sqrt{21}+25}{8}}-\sqrt{5}=\sqrt{3\times \frac{5\sqrt{21}+25}{8}}
Substitute \frac{5\sqrt{21}+25}{8} for x in the equation \sqrt{7x}-\sqrt{5}=\sqrt{3x}.
\frac{3}{4}\times 5^{\frac{1}{2}}+\frac{1}{4}\times 105^{\frac{1}{2}}=\frac{1}{4}\times 105^{\frac{1}{2}}+\frac{3}{4}\times 5^{\frac{1}{2}}
Simplify. The value x=\frac{5\sqrt{21}+25}{8} satisfies the equation.
x=\frac{5\sqrt{21}+25}{8}
Equation \sqrt{7x}-\sqrt{5}=\sqrt{3x} has a unique solution.