Solve for x (complex solution)
x=-\frac{1}{3}\approx -0.333333333
Graph
Share
Copied to clipboard
\left(\sqrt{7x+2}\right)^{2}=\left(\sqrt{4x+1}\right)^{2}
Square both sides of the equation.
7x+2=\left(\sqrt{4x+1}\right)^{2}
Calculate \sqrt{7x+2} to the power of 2 and get 7x+2.
7x+2=4x+1
Calculate \sqrt{4x+1} to the power of 2 and get 4x+1.
7x+2-4x=1
Subtract 4x from both sides.
3x+2=1
Combine 7x and -4x to get 3x.
3x=1-2
Subtract 2 from both sides.
3x=-1
Subtract 2 from 1 to get -1.
x=\frac{-1}{3}
Divide both sides by 3.
x=-\frac{1}{3}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
\sqrt{7\left(-\frac{1}{3}\right)+2}=\sqrt{4\left(-\frac{1}{3}\right)+1}
Substitute -\frac{1}{3} for x in the equation \sqrt{7x+2}=\sqrt{4x+1}.
\frac{1}{3}i\times 3^{\frac{1}{2}}=\frac{1}{3}i\times 3^{\frac{1}{2}}
Simplify. The value x=-\frac{1}{3} satisfies the equation.
x=-\frac{1}{3}
Equation \sqrt{7x+2}=\sqrt{4x+1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}