Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{7x+106}\right)^{2}=\left(2x+26\right)^{2}
Square both sides of the equation.
7x+106=\left(2x+26\right)^{2}
Calculate \sqrt{7x+106} to the power of 2 and get 7x+106.
7x+106=4x^{2}+104x+676
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+26\right)^{2}.
7x+106-4x^{2}=104x+676
Subtract 4x^{2} from both sides.
7x+106-4x^{2}-104x=676
Subtract 104x from both sides.
-97x+106-4x^{2}=676
Combine 7x and -104x to get -97x.
-97x+106-4x^{2}-676=0
Subtract 676 from both sides.
-97x-570-4x^{2}=0
Subtract 676 from 106 to get -570.
-4x^{2}-97x-570=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-97\right)±\sqrt{\left(-97\right)^{2}-4\left(-4\right)\left(-570\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -97 for b, and -570 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-97\right)±\sqrt{9409-4\left(-4\right)\left(-570\right)}}{2\left(-4\right)}
Square -97.
x=\frac{-\left(-97\right)±\sqrt{9409+16\left(-570\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-97\right)±\sqrt{9409-9120}}{2\left(-4\right)}
Multiply 16 times -570.
x=\frac{-\left(-97\right)±\sqrt{289}}{2\left(-4\right)}
Add 9409 to -9120.
x=\frac{-\left(-97\right)±17}{2\left(-4\right)}
Take the square root of 289.
x=\frac{97±17}{2\left(-4\right)}
The opposite of -97 is 97.
x=\frac{97±17}{-8}
Multiply 2 times -4.
x=\frac{114}{-8}
Now solve the equation x=\frac{97±17}{-8} when ± is plus. Add 97 to 17.
x=-\frac{57}{4}
Reduce the fraction \frac{114}{-8} to lowest terms by extracting and canceling out 2.
x=\frac{80}{-8}
Now solve the equation x=\frac{97±17}{-8} when ± is minus. Subtract 17 from 97.
x=-10
Divide 80 by -8.
x=-\frac{57}{4} x=-10
The equation is now solved.
\sqrt{7\left(-\frac{57}{4}\right)+106}=2\left(-\frac{57}{4}\right)+26
Substitute -\frac{57}{4} for x in the equation \sqrt{7x+106}=2x+26.
\frac{5}{2}=-\frac{5}{2}
Simplify. The value x=-\frac{57}{4} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{7\left(-10\right)+106}=2\left(-10\right)+26
Substitute -10 for x in the equation \sqrt{7x+106}=2x+26.
6=6
Simplify. The value x=-10 satisfies the equation.
x=-10
Equation \sqrt{7x+106}=2x+26 has a unique solution.