Solve for x
x=7
Graph
Share
Copied to clipboard
\left(\sqrt{7-x}+3\right)^{2}=\left(\sqrt{2x-5}\right)^{2}
Square both sides of the equation.
\left(\sqrt{7-x}\right)^{2}+6\sqrt{7-x}+9=\left(\sqrt{2x-5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7-x}+3\right)^{2}.
7-x+6\sqrt{7-x}+9=\left(\sqrt{2x-5}\right)^{2}
Calculate \sqrt{7-x} to the power of 2 and get 7-x.
16-x+6\sqrt{7-x}=\left(\sqrt{2x-5}\right)^{2}
Add 7 and 9 to get 16.
16-x+6\sqrt{7-x}=2x-5
Calculate \sqrt{2x-5} to the power of 2 and get 2x-5.
6\sqrt{7-x}=2x-5-\left(16-x\right)
Subtract 16-x from both sides of the equation.
6\sqrt{7-x}=2x-5-16+x
To find the opposite of 16-x, find the opposite of each term.
6\sqrt{7-x}=2x-21+x
Subtract 16 from -5 to get -21.
6\sqrt{7-x}=3x-21
Combine 2x and x to get 3x.
\left(6\sqrt{7-x}\right)^{2}=\left(3x-21\right)^{2}
Square both sides of the equation.
6^{2}\left(\sqrt{7-x}\right)^{2}=\left(3x-21\right)^{2}
Expand \left(6\sqrt{7-x}\right)^{2}.
36\left(\sqrt{7-x}\right)^{2}=\left(3x-21\right)^{2}
Calculate 6 to the power of 2 and get 36.
36\left(7-x\right)=\left(3x-21\right)^{2}
Calculate \sqrt{7-x} to the power of 2 and get 7-x.
252-36x=\left(3x-21\right)^{2}
Use the distributive property to multiply 36 by 7-x.
252-36x=9x^{2}-126x+441
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-21\right)^{2}.
252-36x-9x^{2}=-126x+441
Subtract 9x^{2} from both sides.
252-36x-9x^{2}+126x=441
Add 126x to both sides.
252+90x-9x^{2}=441
Combine -36x and 126x to get 90x.
252+90x-9x^{2}-441=0
Subtract 441 from both sides.
-189+90x-9x^{2}=0
Subtract 441 from 252 to get -189.
-9x^{2}+90x-189=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-90±\sqrt{90^{2}-4\left(-9\right)\left(-189\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 90 for b, and -189 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-90±\sqrt{8100-4\left(-9\right)\left(-189\right)}}{2\left(-9\right)}
Square 90.
x=\frac{-90±\sqrt{8100+36\left(-189\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-90±\sqrt{8100-6804}}{2\left(-9\right)}
Multiply 36 times -189.
x=\frac{-90±\sqrt{1296}}{2\left(-9\right)}
Add 8100 to -6804.
x=\frac{-90±36}{2\left(-9\right)}
Take the square root of 1296.
x=\frac{-90±36}{-18}
Multiply 2 times -9.
x=-\frac{54}{-18}
Now solve the equation x=\frac{-90±36}{-18} when ± is plus. Add -90 to 36.
x=3
Divide -54 by -18.
x=-\frac{126}{-18}
Now solve the equation x=\frac{-90±36}{-18} when ± is minus. Subtract 36 from -90.
x=7
Divide -126 by -18.
x=3 x=7
The equation is now solved.
\sqrt{7-3}+3=\sqrt{2\times 3-5}
Substitute 3 for x in the equation \sqrt{7-x}+3=\sqrt{2x-5}.
5=1
Simplify. The value x=3 does not satisfy the equation.
\sqrt{7-7}+3=\sqrt{2\times 7-5}
Substitute 7 for x in the equation \sqrt{7-x}+3=\sqrt{2x-5}.
3=3
Simplify. The value x=7 satisfies the equation.
x=7
Equation \sqrt{7-x}+3=\sqrt{2x-5} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}