Solve for n
n=0
Share
Copied to clipboard
\left(\sqrt{64n^{2}}\right)^{2}=\left(\sqrt{8n^{2}}\right)^{2}
Square both sides of the equation.
64n^{2}=\left(\sqrt{8n^{2}}\right)^{2}
Calculate \sqrt{64n^{2}} to the power of 2 and get 64n^{2}.
64n^{2}=8n^{2}
Calculate \sqrt{8n^{2}} to the power of 2 and get 8n^{2}.
64n^{2}-8n^{2}=0
Subtract 8n^{2} from both sides.
56n^{2}=0
Combine 64n^{2} and -8n^{2} to get 56n^{2}.
n^{2}=0
Divide both sides by 56. Zero divided by any non-zero number gives zero.
n=0 n=0
Take the square root of both sides of the equation.
n=0
The equation is now solved. Solutions are the same.
\sqrt{64\times 0^{2}}=\sqrt{8\times 0^{2}}
Substitute 0 for n in the equation \sqrt{64n^{2}}=\sqrt{8n^{2}}.
0=0
Simplify. The value n=0 satisfies the equation.
n=0
Equation \sqrt{64n^{2}}=\sqrt{8n^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}