\sqrt { 64 } + 2 \sqrt { ( - 3 ) ^ { 2 } } - 7 \sqrt { 1,69 } + 3 \sqrt { \frac { 25 } { 16 } }
Evaluate
8,65
Factor
\frac{173}{5 \cdot 2 ^ {2}} = 8\frac{13}{20} = 8.65
Share
Copied to clipboard
8+2\sqrt{\left(-3\right)^{2}}-7\sqrt{1,69}+3\sqrt{\frac{25}{16}}
Calculate the square root of 64 and get 8.
8+2\sqrt{9}-7\sqrt{1,69}+3\sqrt{\frac{25}{16}}
Calculate -3 to the power of 2 and get 9.
8+2\times 3-7\sqrt{1,69}+3\sqrt{\frac{25}{16}}
Calculate the square root of 9 and get 3.
8+6-7\sqrt{1,69}+3\sqrt{\frac{25}{16}}
Multiply 2 and 3 to get 6.
14-7\sqrt{1,69}+3\sqrt{\frac{25}{16}}
Add 8 and 6 to get 14.
14-7\times 1,3+3\sqrt{\frac{25}{16}}
Calculate the square root of 1,69 and get 1,3.
14-9,1+3\sqrt{\frac{25}{16}}
Multiply -7 and 1,3 to get -9,1.
4,9+3\sqrt{\frac{25}{16}}
Subtract 9,1 from 14 to get 4,9.
4,9+3\times \frac{5}{4}
Rewrite the square root of the division \frac{25}{16} as the division of square roots \frac{\sqrt{25}}{\sqrt{16}}. Take the square root of both numerator and denominator.
4,9+\frac{3\times 5}{4}
Express 3\times \frac{5}{4} as a single fraction.
4,9+\frac{15}{4}
Multiply 3 and 5 to get 15.
\frac{49}{10}+\frac{15}{4}
Convert decimal number 4,9 to fraction \frac{49}{10}.
\frac{98}{20}+\frac{75}{20}
Least common multiple of 10 and 4 is 20. Convert \frac{49}{10} and \frac{15}{4} to fractions with denominator 20.
\frac{98+75}{20}
Since \frac{98}{20} and \frac{75}{20} have the same denominator, add them by adding their numerators.
\frac{173}{20}
Add 98 and 75 to get 173.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}