Skip to main content
Evaluate
Tick mark Image

Share

3\sqrt{7}+\left(\sqrt{7}-\sqrt{3}\right)^{2}-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
3\sqrt{7}+\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-\sqrt{3}\right)^{2}.
3\sqrt{7}+7-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
The square of \sqrt{7} is 7.
3\sqrt{7}+7-2\sqrt{21}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
3\sqrt{7}+7-2\sqrt{21}+3-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
The square of \sqrt{3} is 3.
3\sqrt{7}+10-2\sqrt{21}-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
Add 7 and 3 to get 10.
3\sqrt{7}+10-2\sqrt{21}-\left(\left(\sqrt{21}\right)^{2}-4\sqrt{21}+4\right)-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{21}-2\right)^{2}.
3\sqrt{7}+10-2\sqrt{21}-\left(21-4\sqrt{21}+4\right)-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
The square of \sqrt{21} is 21.
3\sqrt{7}+10-2\sqrt{21}-\left(25-4\sqrt{21}\right)-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
Add 21 and 4 to get 25.
3\sqrt{7}+10-2\sqrt{21}-25+4\sqrt{21}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
To find the opposite of 25-4\sqrt{21}, find the opposite of each term.
3\sqrt{7}-15-2\sqrt{21}+4\sqrt{21}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
Subtract 25 from 10 to get -15.
3\sqrt{7}-15+2\sqrt{21}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
Combine -2\sqrt{21} and 4\sqrt{21} to get 2\sqrt{21}.
3\sqrt{7}-15+2\sqrt{21}-2\sqrt{21}+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
Factor 84=2^{2}\times 21. Rewrite the square root of the product \sqrt{2^{2}\times 21} as the product of square roots \sqrt{2^{2}}\sqrt{21}. Take the square root of 2^{2}.
3\sqrt{7}-15+\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)+\sqrt{400}
Combine 2\sqrt{21} and -2\sqrt{21} to get 0.
3\sqrt{7}-15+\left(\sqrt{2}\right)^{2}-\left(\sqrt{7}\right)^{2}+\sqrt{400}
Consider \left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\sqrt{7}-15+2-\left(\sqrt{7}\right)^{2}+\sqrt{400}
The square of \sqrt{2} is 2.
3\sqrt{7}-15+2-7+\sqrt{400}
The square of \sqrt{7} is 7.
3\sqrt{7}-15-5+\sqrt{400}
Subtract 7 from 2 to get -5.
3\sqrt{7}-20+\sqrt{400}
Subtract 5 from -15 to get -20.
3\sqrt{7}-20+20
Calculate the square root of 400 and get 20.
3\sqrt{7}
Add -20 and 20 to get 0.