Evaluate
\sqrt{14}+3\sqrt{7}-13\approx -1.32108868
Share
Copied to clipboard
3\sqrt{7}+\left(\sqrt{7}-\sqrt{3}\right)^{2}-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
3\sqrt{7}+\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-\sqrt{3}\right)^{2}.
3\sqrt{7}+7-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
The square of \sqrt{7} is 7.
3\sqrt{7}+7-2\sqrt{21}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
3\sqrt{7}+7-2\sqrt{21}+3-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
The square of \sqrt{3} is 3.
3\sqrt{7}+10-2\sqrt{21}-\left(\sqrt{21}-2\right)^{2}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
Add 7 and 3 to get 10.
3\sqrt{7}+10-2\sqrt{21}-\left(\left(\sqrt{21}\right)^{2}-4\sqrt{21}+4\right)-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{21}-2\right)^{2}.
3\sqrt{7}+10-2\sqrt{21}-\left(21-4\sqrt{21}+4\right)-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
The square of \sqrt{21} is 21.
3\sqrt{7}+10-2\sqrt{21}-\left(25-4\sqrt{21}\right)-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
Add 21 and 4 to get 25.
3\sqrt{7}+10-2\sqrt{21}-25+4\sqrt{21}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
To find the opposite of 25-4\sqrt{21}, find the opposite of each term.
3\sqrt{7}-15-2\sqrt{21}+4\sqrt{21}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
Subtract 25 from 10 to get -15.
3\sqrt{7}-15+2\sqrt{21}-\sqrt{84}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
Combine -2\sqrt{21} and 4\sqrt{21} to get 2\sqrt{21}.
3\sqrt{7}-15+2\sqrt{21}-2\sqrt{21}+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
Factor 84=2^{2}\times 21. Rewrite the square root of the product \sqrt{2^{2}\times 21} as the product of square roots \sqrt{2^{2}}\sqrt{21}. Take the square root of 2^{2}.
3\sqrt{7}-15+\left(\sqrt{2}+\sqrt{7}\right)\sqrt{2}
Combine 2\sqrt{21} and -2\sqrt{21} to get 0.
3\sqrt{7}-15+\left(\sqrt{2}\right)^{2}+\sqrt{7}\sqrt{2}
Use the distributive property to multiply \sqrt{2}+\sqrt{7} by \sqrt{2}.
3\sqrt{7}-15+2+\sqrt{7}\sqrt{2}
The square of \sqrt{2} is 2.
3\sqrt{7}-15+2+\sqrt{14}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
3\sqrt{7}-13+\sqrt{14}
Add -15 and 2 to get -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}