Solve for z
z=12
Share
Copied to clipboard
\sqrt{6z+9}=-3+z
Subtract -z from both sides of the equation.
\left(\sqrt{6z+9}\right)^{2}=\left(-3+z\right)^{2}
Square both sides of the equation.
6z+9=\left(-3+z\right)^{2}
Calculate \sqrt{6z+9} to the power of 2 and get 6z+9.
6z+9=9-6z+z^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3+z\right)^{2}.
6z+9-9=-6z+z^{2}
Subtract 9 from both sides.
6z=-6z+z^{2}
Subtract 9 from 9 to get 0.
6z+6z=z^{2}
Add 6z to both sides.
12z=z^{2}
Combine 6z and 6z to get 12z.
12z-z^{2}=0
Subtract z^{2} from both sides.
z\left(12-z\right)=0
Factor out z.
z=0 z=12
To find equation solutions, solve z=0 and 12-z=0.
\sqrt{6\times 0+9}-0=-3
Substitute 0 for z in the equation \sqrt{6z+9}-z=-3.
3=-3
Simplify. The value z=0 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{6\times 12+9}-12=-3
Substitute 12 for z in the equation \sqrt{6z+9}-z=-3.
-3=-3
Simplify. The value z=12 satisfies the equation.
z=12
Equation \sqrt{6z+9}=z-3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}