Solve for y
y=7
y=3
Graph
Share
Copied to clipboard
\left(\sqrt{6y+7}\right)^{2}=\left(5+\sqrt{y-3}\right)^{2}
Square both sides of the equation.
6y+7=\left(5+\sqrt{y-3}\right)^{2}
Calculate \sqrt{6y+7} to the power of 2 and get 6y+7.
6y+7=25+10\sqrt{y-3}+\left(\sqrt{y-3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+\sqrt{y-3}\right)^{2}.
6y+7=25+10\sqrt{y-3}+y-3
Calculate \sqrt{y-3} to the power of 2 and get y-3.
6y+7=22+10\sqrt{y-3}+y
Subtract 3 from 25 to get 22.
6y+7-\left(22+y\right)=10\sqrt{y-3}
Subtract 22+y from both sides of the equation.
6y+7-22-y=10\sqrt{y-3}
To find the opposite of 22+y, find the opposite of each term.
6y-15-y=10\sqrt{y-3}
Subtract 22 from 7 to get -15.
5y-15=10\sqrt{y-3}
Combine 6y and -y to get 5y.
\left(5y-15\right)^{2}=\left(10\sqrt{y-3}\right)^{2}
Square both sides of the equation.
25y^{2}-150y+225=\left(10\sqrt{y-3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5y-15\right)^{2}.
25y^{2}-150y+225=10^{2}\left(\sqrt{y-3}\right)^{2}
Expand \left(10\sqrt{y-3}\right)^{2}.
25y^{2}-150y+225=100\left(\sqrt{y-3}\right)^{2}
Calculate 10 to the power of 2 and get 100.
25y^{2}-150y+225=100\left(y-3\right)
Calculate \sqrt{y-3} to the power of 2 and get y-3.
25y^{2}-150y+225=100y-300
Use the distributive property to multiply 100 by y-3.
25y^{2}-150y+225-100y=-300
Subtract 100y from both sides.
25y^{2}-250y+225=-300
Combine -150y and -100y to get -250y.
25y^{2}-250y+225+300=0
Add 300 to both sides.
25y^{2}-250y+525=0
Add 225 and 300 to get 525.
y=\frac{-\left(-250\right)±\sqrt{\left(-250\right)^{2}-4\times 25\times 525}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -250 for b, and 525 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-250\right)±\sqrt{62500-4\times 25\times 525}}{2\times 25}
Square -250.
y=\frac{-\left(-250\right)±\sqrt{62500-100\times 525}}{2\times 25}
Multiply -4 times 25.
y=\frac{-\left(-250\right)±\sqrt{62500-52500}}{2\times 25}
Multiply -100 times 525.
y=\frac{-\left(-250\right)±\sqrt{10000}}{2\times 25}
Add 62500 to -52500.
y=\frac{-\left(-250\right)±100}{2\times 25}
Take the square root of 10000.
y=\frac{250±100}{2\times 25}
The opposite of -250 is 250.
y=\frac{250±100}{50}
Multiply 2 times 25.
y=\frac{350}{50}
Now solve the equation y=\frac{250±100}{50} when ± is plus. Add 250 to 100.
y=7
Divide 350 by 50.
y=\frac{150}{50}
Now solve the equation y=\frac{250±100}{50} when ± is minus. Subtract 100 from 250.
y=3
Divide 150 by 50.
y=7 y=3
The equation is now solved.
\sqrt{6\times 7+7}=5+\sqrt{7-3}
Substitute 7 for y in the equation \sqrt{6y+7}=5+\sqrt{y-3}.
7=7
Simplify. The value y=7 satisfies the equation.
\sqrt{6\times 3+7}=5+\sqrt{3-3}
Substitute 3 for y in the equation \sqrt{6y+7}=5+\sqrt{y-3}.
5=5
Simplify. The value y=3 satisfies the equation.
y=7 y=3
List all solutions of \sqrt{6y+7}=\sqrt{y-3}+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}