Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{6x-1}=9+\sqrt{5x+4}
Subtract -\sqrt{5x+4} from both sides of the equation.
\left(\sqrt{6x-1}\right)^{2}=\left(9+\sqrt{5x+4}\right)^{2}
Square both sides of the equation.
6x-1=\left(9+\sqrt{5x+4}\right)^{2}
Calculate \sqrt{6x-1} to the power of 2 and get 6x-1.
6x-1=81+18\sqrt{5x+4}+\left(\sqrt{5x+4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(9+\sqrt{5x+4}\right)^{2}.
6x-1=81+18\sqrt{5x+4}+5x+4
Calculate \sqrt{5x+4} to the power of 2 and get 5x+4.
6x-1=85+18\sqrt{5x+4}+5x
Add 81 and 4 to get 85.
6x-1-\left(85+5x\right)=18\sqrt{5x+4}
Subtract 85+5x from both sides of the equation.
6x-1-85-5x=18\sqrt{5x+4}
To find the opposite of 85+5x, find the opposite of each term.
6x-86-5x=18\sqrt{5x+4}
Subtract 85 from -1 to get -86.
x-86=18\sqrt{5x+4}
Combine 6x and -5x to get x.
\left(x-86\right)^{2}=\left(18\sqrt{5x+4}\right)^{2}
Square both sides of the equation.
x^{2}-172x+7396=\left(18\sqrt{5x+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-86\right)^{2}.
x^{2}-172x+7396=18^{2}\left(\sqrt{5x+4}\right)^{2}
Expand \left(18\sqrt{5x+4}\right)^{2}.
x^{2}-172x+7396=324\left(\sqrt{5x+4}\right)^{2}
Calculate 18 to the power of 2 and get 324.
x^{2}-172x+7396=324\left(5x+4\right)
Calculate \sqrt{5x+4} to the power of 2 and get 5x+4.
x^{2}-172x+7396=1620x+1296
Use the distributive property to multiply 324 by 5x+4.
x^{2}-172x+7396-1620x=1296
Subtract 1620x from both sides.
x^{2}-1792x+7396=1296
Combine -172x and -1620x to get -1792x.
x^{2}-1792x+7396-1296=0
Subtract 1296 from both sides.
x^{2}-1792x+6100=0
Subtract 1296 from 7396 to get 6100.
x=\frac{-\left(-1792\right)±\sqrt{\left(-1792\right)^{2}-4\times 6100}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1792 for b, and 6100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1792\right)±\sqrt{3211264-4\times 6100}}{2}
Square -1792.
x=\frac{-\left(-1792\right)±\sqrt{3211264-24400}}{2}
Multiply -4 times 6100.
x=\frac{-\left(-1792\right)±\sqrt{3186864}}{2}
Add 3211264 to -24400.
x=\frac{-\left(-1792\right)±36\sqrt{2459}}{2}
Take the square root of 3186864.
x=\frac{1792±36\sqrt{2459}}{2}
The opposite of -1792 is 1792.
x=\frac{36\sqrt{2459}+1792}{2}
Now solve the equation x=\frac{1792±36\sqrt{2459}}{2} when ± is plus. Add 1792 to 36\sqrt{2459}.
x=18\sqrt{2459}+896
Divide 1792+36\sqrt{2459} by 2.
x=\frac{1792-36\sqrt{2459}}{2}
Now solve the equation x=\frac{1792±36\sqrt{2459}}{2} when ± is minus. Subtract 36\sqrt{2459} from 1792.
x=896-18\sqrt{2459}
Divide 1792-36\sqrt{2459} by 2.
x=18\sqrt{2459}+896 x=896-18\sqrt{2459}
The equation is now solved.
\sqrt{6\left(18\sqrt{2459}+896\right)-1}-\sqrt{5\left(18\sqrt{2459}+896\right)+4}=9
Substitute 18\sqrt{2459}+896 for x in the equation \sqrt{6x-1}-\sqrt{5x+4}=9.
9=9
Simplify. The value x=18\sqrt{2459}+896 satisfies the equation.
\sqrt{6\left(896-18\sqrt{2459}\right)-1}-\sqrt{5\left(896-18\sqrt{2459}\right)+4}=9
Substitute 896-18\sqrt{2459} for x in the equation \sqrt{6x-1}-\sqrt{5x+4}=9.
99-2\times 2459^{\frac{1}{2}}=9
Simplify. The value x=896-18\sqrt{2459} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{6\left(18\sqrt{2459}+896\right)-1}-\sqrt{5\left(18\sqrt{2459}+896\right)+4}=9
Substitute 18\sqrt{2459}+896 for x in the equation \sqrt{6x-1}-\sqrt{5x+4}=9.
9=9
Simplify. The value x=18\sqrt{2459}+896 satisfies the equation.
x=18\sqrt{2459}+896
Equation \sqrt{6x-1}=\sqrt{5x+4}+9 has a unique solution.