Solve for x
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Share
Copied to clipboard
\left(\sqrt{6x+5}\right)^{2}=\left(\sqrt{41-2x}\right)^{2}
Square both sides of the equation.
6x+5=\left(\sqrt{41-2x}\right)^{2}
Calculate \sqrt{6x+5} to the power of 2 and get 6x+5.
6x+5=41-2x
Calculate \sqrt{41-2x} to the power of 2 and get 41-2x.
6x+5+2x=41
Add 2x to both sides.
8x+5=41
Combine 6x and 2x to get 8x.
8x=41-5
Subtract 5 from both sides.
8x=36
Subtract 5 from 41 to get 36.
x=\frac{36}{8}
Divide both sides by 8.
x=\frac{9}{2}
Reduce the fraction \frac{36}{8} to lowest terms by extracting and canceling out 4.
\sqrt{6\times \frac{9}{2}+5}=\sqrt{41-2\times \frac{9}{2}}
Substitute \frac{9}{2} for x in the equation \sqrt{6x+5}=\sqrt{41-2x}.
4\times 2^{\frac{1}{2}}=4\times 2^{\frac{1}{2}}
Simplify. The value x=\frac{9}{2} satisfies the equation.
x=\frac{9}{2}
Equation \sqrt{6x+5}=\sqrt{41-2x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}