Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{6x+1}\right)^{2}=\left(2x+1\right)^{2}
Square both sides of the equation.
6x+1=\left(2x+1\right)^{2}
Calculate \sqrt{6x+1} to the power of 2 and get 6x+1.
6x+1=4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
6x+1-4x^{2}=4x+1
Subtract 4x^{2} from both sides.
6x+1-4x^{2}-4x=1
Subtract 4x from both sides.
2x+1-4x^{2}=1
Combine 6x and -4x to get 2x.
2x+1-4x^{2}-1=0
Subtract 1 from both sides.
2x-4x^{2}=0
Subtract 1 from 1 to get 0.
x\left(2-4x\right)=0
Factor out x.
x=0 x=\frac{1}{2}
To find equation solutions, solve x=0 and 2-4x=0.
\sqrt{6\times 0+1}=2\times 0+1
Substitute 0 for x in the equation \sqrt{6x+1}=2x+1.
1=1
Simplify. The value x=0 satisfies the equation.
\sqrt{6\times \frac{1}{2}+1}=2\times \frac{1}{2}+1
Substitute \frac{1}{2} for x in the equation \sqrt{6x+1}=2x+1.
2=2
Simplify. The value x=\frac{1}{2} satisfies the equation.
x=0 x=\frac{1}{2}
List all solutions of \sqrt{6x+1}=2x+1.