Solve for x
x=\frac{1}{2}=0.5
x=0
Graph
Share
Copied to clipboard
\left(\sqrt{6x+1}\right)^{2}=\left(2x+1\right)^{2}
Square both sides of the equation.
6x+1=\left(2x+1\right)^{2}
Calculate \sqrt{6x+1} to the power of 2 and get 6x+1.
6x+1=4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
6x+1-4x^{2}=4x+1
Subtract 4x^{2} from both sides.
6x+1-4x^{2}-4x=1
Subtract 4x from both sides.
2x+1-4x^{2}=1
Combine 6x and -4x to get 2x.
2x+1-4x^{2}-1=0
Subtract 1 from both sides.
2x-4x^{2}=0
Subtract 1 from 1 to get 0.
x\left(2-4x\right)=0
Factor out x.
x=0 x=\frac{1}{2}
To find equation solutions, solve x=0 and 2-4x=0.
\sqrt{6\times 0+1}=2\times 0+1
Substitute 0 for x in the equation \sqrt{6x+1}=2x+1.
1=1
Simplify. The value x=0 satisfies the equation.
\sqrt{6\times \frac{1}{2}+1}=2\times \frac{1}{2}+1
Substitute \frac{1}{2} for x in the equation \sqrt{6x+1}=2x+1.
2=2
Simplify. The value x=\frac{1}{2} satisfies the equation.
x=0 x=\frac{1}{2}
List all solutions of \sqrt{6x+1}=2x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}