Solve for c
c=-1
Share
Copied to clipboard
\left(\sqrt{6c+15}\right)^{2}=\left(c+4\right)^{2}
Square both sides of the equation.
6c+15=\left(c+4\right)^{2}
Calculate \sqrt{6c+15} to the power of 2 and get 6c+15.
6c+15=c^{2}+8c+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c+4\right)^{2}.
6c+15-c^{2}=8c+16
Subtract c^{2} from both sides.
6c+15-c^{2}-8c=16
Subtract 8c from both sides.
-2c+15-c^{2}=16
Combine 6c and -8c to get -2c.
-2c+15-c^{2}-16=0
Subtract 16 from both sides.
-2c-1-c^{2}=0
Subtract 16 from 15 to get -1.
-c^{2}-2c-1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=-\left(-1\right)=1
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -c^{2}+ac+bc-1. To find a and b, set up a system to be solved.
a=-1 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(-c^{2}-c\right)+\left(-c-1\right)
Rewrite -c^{2}-2c-1 as \left(-c^{2}-c\right)+\left(-c-1\right).
c\left(-c-1\right)-c-1
Factor out c in -c^{2}-c.
\left(-c-1\right)\left(c+1\right)
Factor out common term -c-1 by using distributive property.
c=-1 c=-1
To find equation solutions, solve -c-1=0 and c+1=0.
\sqrt{6\left(-1\right)+15}=-1+4
Substitute -1 for c in the equation \sqrt{6c+15}=c+4.
3=3
Simplify. The value c=-1 satisfies the equation.
\sqrt{6\left(-1\right)+15}=-1+4
Substitute -1 for c in the equation \sqrt{6c+15}=c+4.
3=3
Simplify. The value c=-1 satisfies the equation.
c=-1 c=-1
List all solutions of \sqrt{6c+15}=c+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}