Solve for a
a = \frac{13}{2} = 6\frac{1}{2} = 6.5
Share
Copied to clipboard
\sqrt{6a-5}=\sqrt{4a+8}
Subtract -\sqrt{4a+8} from both sides of the equation.
\left(\sqrt{6a-5}\right)^{2}=\left(\sqrt{4a+8}\right)^{2}
Square both sides of the equation.
6a-5=\left(\sqrt{4a+8}\right)^{2}
Calculate \sqrt{6a-5} to the power of 2 and get 6a-5.
6a-5=4a+8
Calculate \sqrt{4a+8} to the power of 2 and get 4a+8.
6a-5-4a=8
Subtract 4a from both sides.
2a-5=8
Combine 6a and -4a to get 2a.
2a=8+5
Add 5 to both sides.
2a=13
Add 8 and 5 to get 13.
a=\frac{13}{2}
Divide both sides by 2.
\sqrt{6\times \frac{13}{2}-5}-\sqrt{4\times \frac{13}{2}+8}=0
Substitute \frac{13}{2} for a in the equation \sqrt{6a-5}-\sqrt{4a+8}=0.
0=0
Simplify. The value a=\frac{13}{2} satisfies the equation.
a=\frac{13}{2}
Equation \sqrt{6a-5}=\sqrt{4a+8} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}