Solve for x
x=-\frac{\sqrt{6}\left(3y+\sqrt{2}\right)}{6}
Solve for y
y=\frac{-\sqrt{6}x-\sqrt{2}}{3}
Graph
Share
Copied to clipboard
\sqrt{6}x+\sqrt{2}=-3y
Subtract 3y from both sides. Anything subtracted from zero gives its negation.
\sqrt{6}x=-3y-\sqrt{2}
Subtract \sqrt{2} from both sides.
\frac{\sqrt{6}x}{\sqrt{6}}=\frac{-3y-\sqrt{2}}{\sqrt{6}}
Divide both sides by \sqrt{6}.
x=\frac{-3y-\sqrt{2}}{\sqrt{6}}
Dividing by \sqrt{6} undoes the multiplication by \sqrt{6}.
x=-\frac{\sqrt{6}\left(3y+\sqrt{2}\right)}{6}
Divide -3y-\sqrt{2} by \sqrt{6}.
3y+\sqrt{2}=-\sqrt{6}x
Subtract \sqrt{6}x from both sides. Anything subtracted from zero gives its negation.
3y=-\sqrt{6}x-\sqrt{2}
Subtract \sqrt{2} from both sides.
\frac{3y}{3}=\frac{-\sqrt{6}x-\sqrt{2}}{3}
Divide both sides by 3.
y=\frac{-\sqrt{6}x-\sqrt{2}}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}