Evaluate
\sqrt{6}+8\sqrt{3}\approx 16.305896203
Factor
\sqrt{6} + 8 \sqrt{3} = 16.305896203
Share
Copied to clipboard
\sqrt{6}\left(5+3\sqrt{2}\right)-\frac{24-\sqrt{72}}{\sqrt{6}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\sqrt{6}\left(5+3\sqrt{2}\right)-\frac{24-6\sqrt{2}}{\sqrt{6}}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\sqrt{6}\left(5+3\sqrt{2}\right)-\frac{\left(24-6\sqrt{2}\right)\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{24-6\sqrt{2}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\sqrt{6}\left(5+3\sqrt{2}\right)-\frac{\left(24-6\sqrt{2}\right)\sqrt{6}}{6}
The square of \sqrt{6} is 6.
5\sqrt{6}+3\sqrt{6}\sqrt{2}-\frac{\left(24-6\sqrt{2}\right)\sqrt{6}}{6}
Use the distributive property to multiply \sqrt{6} by 5+3\sqrt{2}.
5\sqrt{6}+3\sqrt{2}\sqrt{3}\sqrt{2}-\frac{\left(24-6\sqrt{2}\right)\sqrt{6}}{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
5\sqrt{6}+3\times 2\sqrt{3}-\frac{\left(24-6\sqrt{2}\right)\sqrt{6}}{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
5\sqrt{6}+6\sqrt{3}-\frac{\left(24-6\sqrt{2}\right)\sqrt{6}}{6}
Multiply 3 and 2 to get 6.
5\sqrt{6}+6\sqrt{3}-\frac{24\sqrt{6}-6\sqrt{2}\sqrt{6}}{6}
Use the distributive property to multiply 24-6\sqrt{2} by \sqrt{6}.
5\sqrt{6}+6\sqrt{3}-\frac{24\sqrt{6}-6\sqrt{2}\sqrt{2}\sqrt{3}}{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
5\sqrt{6}+6\sqrt{3}-\frac{24\sqrt{6}-6\times 2\sqrt{3}}{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
5\sqrt{6}+6\sqrt{3}-\frac{24\sqrt{6}-12\sqrt{3}}{6}
Multiply -6 and 2 to get -12.
\frac{6\left(5\sqrt{6}+6\sqrt{3}\right)}{6}-\frac{24\sqrt{6}-12\sqrt{3}}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5\sqrt{6}+6\sqrt{3} times \frac{6}{6}.
\frac{6\left(5\sqrt{6}+6\sqrt{3}\right)-\left(24\sqrt{6}-12\sqrt{3}\right)}{6}
Since \frac{6\left(5\sqrt{6}+6\sqrt{3}\right)}{6} and \frac{24\sqrt{6}-12\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{30\sqrt{6}+36\sqrt{3}-24\sqrt{6}+12\sqrt{3}}{6}
Do the multiplications in 6\left(5\sqrt{6}+6\sqrt{3}\right)-\left(24\sqrt{6}-12\sqrt{3}\right).
\frac{6\sqrt{6}+48\sqrt{3}}{6}
Do the calculations in 30\sqrt{6}+36\sqrt{3}-24\sqrt{6}+12\sqrt{3}.
\sqrt{6}+8\sqrt{3}
Divide each term of 6\sqrt{6}+48\sqrt{3} by 6 to get \sqrt{6}+8\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}