Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{6}\left(\frac{4\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{6}{\sqrt{3}}\right)-6\left(\frac{2}{\sqrt{78}}+\frac{15}{2\sqrt{75}}\right)
Rationalize the denominator of \frac{4}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{6}\left(\frac{4\sqrt{2}}{2}+\frac{6}{\sqrt{3}}\right)-6\left(\frac{2}{\sqrt{78}}+\frac{15}{2\sqrt{75}}\right)
The square of \sqrt{2} is 2.
\sqrt{6}\left(2\sqrt{2}+\frac{6}{\sqrt{3}}\right)-6\left(\frac{2}{\sqrt{78}}+\frac{15}{2\sqrt{75}}\right)
Divide 4\sqrt{2} by 2 to get 2\sqrt{2}.
\sqrt{6}\left(2\sqrt{2}+\frac{6\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)-6\left(\frac{2}{\sqrt{78}}+\frac{15}{2\sqrt{75}}\right)
Rationalize the denominator of \frac{6}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{6}\left(2\sqrt{2}+\frac{6\sqrt{3}}{3}\right)-6\left(\frac{2}{\sqrt{78}}+\frac{15}{2\sqrt{75}}\right)
The square of \sqrt{3} is 3.
\sqrt{6}\left(2\sqrt{2}+2\sqrt{3}\right)-6\left(\frac{2}{\sqrt{78}}+\frac{15}{2\sqrt{75}}\right)
Divide 6\sqrt{3} by 3 to get 2\sqrt{3}.
\sqrt{6}\left(2\sqrt{2}+2\sqrt{3}\right)-6\left(\frac{2\sqrt{78}}{\left(\sqrt{78}\right)^{2}}+\frac{15}{2\sqrt{75}}\right)
Rationalize the denominator of \frac{2}{\sqrt{78}} by multiplying numerator and denominator by \sqrt{78}.
\sqrt{6}\left(2\sqrt{2}+2\sqrt{3}\right)-6\left(\frac{2\sqrt{78}}{78}+\frac{15}{2\sqrt{75}}\right)
The square of \sqrt{78} is 78.
\sqrt{6}\left(2\sqrt{2}+2\sqrt{3}\right)-6\left(\frac{1}{39}\sqrt{78}+\frac{15}{2\sqrt{75}}\right)
Divide 2\sqrt{78} by 78 to get \frac{1}{39}\sqrt{78}.
\sqrt{6}\left(2\sqrt{2}+2\sqrt{3}\right)-6\left(\frac{1}{39}\sqrt{78}+\frac{15}{2\times 5\sqrt{3}}\right)
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\sqrt{6}\left(2\sqrt{2}+2\sqrt{3}\right)-6\left(\frac{1}{39}\sqrt{78}+\frac{15}{10\sqrt{3}}\right)
Multiply 2 and 5 to get 10.
\sqrt{6}\left(2\sqrt{2}+2\sqrt{3}\right)-6\left(\frac{1}{39}\sqrt{78}+\frac{15\sqrt{3}}{10\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{15}{10\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{6}\left(2\sqrt{2}+2\sqrt{3}\right)-6\left(\frac{1}{39}\sqrt{78}+\frac{15\sqrt{3}}{10\times 3}\right)
The square of \sqrt{3} is 3.
\sqrt{6}\left(2\sqrt{2}+2\sqrt{3}\right)-6\left(\frac{1}{39}\sqrt{78}+\frac{\sqrt{3}}{2}\right)
Cancel out 3\times 5 in both numerator and denominator.
2\sqrt{6}\sqrt{2}+2\sqrt{6}\sqrt{3}-6\left(\frac{1}{39}\sqrt{78}+\frac{\sqrt{3}}{2}\right)
Use the distributive property to multiply \sqrt{6} by 2\sqrt{2}+2\sqrt{3}.
2\sqrt{2}\sqrt{3}\sqrt{2}+2\sqrt{6}\sqrt{3}-6\left(\frac{1}{39}\sqrt{78}+\frac{\sqrt{3}}{2}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\times 2\sqrt{3}+2\sqrt{6}\sqrt{3}-6\left(\frac{1}{39}\sqrt{78}+\frac{\sqrt{3}}{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
4\sqrt{3}+2\sqrt{6}\sqrt{3}-6\left(\frac{1}{39}\sqrt{78}+\frac{\sqrt{3}}{2}\right)
Multiply 2 and 2 to get 4.
4\sqrt{3}+2\sqrt{3}\sqrt{2}\sqrt{3}-6\left(\frac{1}{39}\sqrt{78}+\frac{\sqrt{3}}{2}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
4\sqrt{3}+2\times 3\sqrt{2}-6\left(\frac{1}{39}\sqrt{78}+\frac{\sqrt{3}}{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
4\sqrt{3}+6\sqrt{2}-6\left(\frac{1}{39}\sqrt{78}+\frac{\sqrt{3}}{2}\right)
Multiply 2 and 3 to get 6.
4\sqrt{3}+6\sqrt{2}-6\times \frac{1}{39}\sqrt{78}-6\times \frac{\sqrt{3}}{2}
Use the distributive property to multiply -6 by \frac{1}{39}\sqrt{78}+\frac{\sqrt{3}}{2}.
4\sqrt{3}+6\sqrt{2}+\frac{-6}{39}\sqrt{78}-6\times \frac{\sqrt{3}}{2}
Multiply -6 and \frac{1}{39} to get \frac{-6}{39}.
4\sqrt{3}+6\sqrt{2}-\frac{2}{13}\sqrt{78}-6\times \frac{\sqrt{3}}{2}
Reduce the fraction \frac{-6}{39} to lowest terms by extracting and canceling out 3.
4\sqrt{3}+6\sqrt{2}-\frac{2}{13}\sqrt{78}-3\sqrt{3}
Cancel out 2, the greatest common factor in 6 and 2.
\sqrt{3}+6\sqrt{2}-\frac{2}{13}\sqrt{78}
Combine 4\sqrt{3} and -3\sqrt{3} to get \sqrt{3}.