Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{6}\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-2\sqrt{3}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{6}\left(\frac{\sqrt{2}}{2}-2\sqrt{3}\right)
The square of \sqrt{2} is 2.
\sqrt{6}\left(\frac{\sqrt{2}}{2}+\frac{2\left(-2\right)\sqrt{3}}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{3} times \frac{2}{2}.
\sqrt{6}\times \frac{\sqrt{2}+2\left(-2\right)\sqrt{3}}{2}
Since \frac{\sqrt{2}}{2} and \frac{2\left(-2\right)\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\sqrt{6}\times \frac{\sqrt{2}-4\sqrt{3}}{2}
Do the multiplications in \sqrt{2}+2\left(-2\right)\sqrt{3}.
\frac{\sqrt{6}\left(\sqrt{2}-4\sqrt{3}\right)}{2}
Express \sqrt{6}\times \frac{\sqrt{2}-4\sqrt{3}}{2} as a single fraction.
\frac{\sqrt{6}\sqrt{2}-4\sqrt{6}\sqrt{3}}{2}
Use the distributive property to multiply \sqrt{6} by \sqrt{2}-4\sqrt{3}.
\frac{\sqrt{2}\sqrt{3}\sqrt{2}-4\sqrt{6}\sqrt{3}}{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2\sqrt{3}-4\sqrt{6}\sqrt{3}}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2\sqrt{3}-4\sqrt{3}\sqrt{2}\sqrt{3}}{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{2\sqrt{3}-4\times 3\sqrt{2}}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{2\sqrt{3}-12\sqrt{2}}{2}
Multiply -4 and 3 to get -12.
\sqrt{3}-6\sqrt{2}
Divide each term of 2\sqrt{3}-12\sqrt{2} by 2 to get \sqrt{3}-6\sqrt{2}.