Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{6}\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{6}}{\sqrt{6}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}+\sqrt{2}.
\frac{\sqrt{6}\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{6}\left(\sqrt{6}+\sqrt{2}\right)}{6-2}
Square \sqrt{6}. Square \sqrt{2}.
\frac{\sqrt{6}\left(\sqrt{6}+\sqrt{2}\right)}{4}
Subtract 2 from 6 to get 4.
\frac{\left(\sqrt{6}\right)^{2}+\sqrt{6}\sqrt{2}}{4}
Use the distributive property to multiply \sqrt{6} by \sqrt{6}+\sqrt{2}.
\frac{6+\sqrt{6}\sqrt{2}}{4}
The square of \sqrt{6} is 6.
\frac{6+\sqrt{2}\sqrt{3}\sqrt{2}}{4}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6+2\sqrt{3}}{4}
Multiply \sqrt{2} and \sqrt{2} to get 2.