Evaluate
\frac{2\left(3\sqrt{3}+11\sqrt{2}\right)}{5}\approx 8.301000644
Share
Copied to clipboard
\frac{\sqrt{6}}{\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{2}}+\sqrt{50}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{6}}{\frac{\sqrt{3}}{3}+\sqrt{2}}+\sqrt{50}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}}{\frac{\sqrt{3}}{3}+\frac{3\sqrt{2}}{3}}+\sqrt{50}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2} times \frac{3}{3}.
\frac{\sqrt{6}}{\frac{\sqrt{3}+3\sqrt{2}}{3}}+\sqrt{50}
Since \frac{\sqrt{3}}{3} and \frac{3\sqrt{2}}{3} have the same denominator, add them by adding their numerators.
\frac{\sqrt{6}\times 3}{\sqrt{3}+3\sqrt{2}}+\sqrt{50}
Divide \sqrt{6} by \frac{\sqrt{3}+3\sqrt{2}}{3} by multiplying \sqrt{6} by the reciprocal of \frac{\sqrt{3}+3\sqrt{2}}{3}.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{\left(\sqrt{3}+3\sqrt{2}\right)\left(\sqrt{3}-3\sqrt{2}\right)}+\sqrt{50}
Rationalize the denominator of \frac{\sqrt{6}\times 3}{\sqrt{3}+3\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-3\sqrt{2}.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}+\sqrt{50}
Consider \left(\sqrt{3}+3\sqrt{2}\right)\left(\sqrt{3}-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{3-\left(3\sqrt{2}\right)^{2}}+\sqrt{50}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{3-3^{2}\left(\sqrt{2}\right)^{2}}+\sqrt{50}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{3-9\left(\sqrt{2}\right)^{2}}+\sqrt{50}
Calculate 3 to the power of 2 and get 9.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{3-9\times 2}+\sqrt{50}
The square of \sqrt{2} is 2.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{3-18}+\sqrt{50}
Multiply 9 and 2 to get 18.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{-15}+\sqrt{50}
Subtract 18 from 3 to get -15.
\sqrt{6}\left(-\frac{1}{5}\right)\left(\sqrt{3}-3\sqrt{2}\right)+\sqrt{50}
Divide \sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right) by -15 to get \sqrt{6}\left(-\frac{1}{5}\right)\left(\sqrt{3}-3\sqrt{2}\right).
\sqrt{6}\left(-\frac{1}{5}\right)\left(\sqrt{3}-3\sqrt{2}\right)+5\sqrt{2}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\sqrt{6}\left(-\frac{1}{5}\right)\sqrt{3}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Use the distributive property to multiply \sqrt{6}\left(-\frac{1}{5}\right) by \sqrt{3}-3\sqrt{2}.
\sqrt{3}\sqrt{2}\left(-\frac{1}{5}\right)\sqrt{3}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
3\left(-\frac{1}{5}\right)\sqrt{2}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\left(-1\right)}{5}\sqrt{2}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Express 3\left(-\frac{1}{5}\right) as a single fraction.
\frac{-3}{5}\sqrt{2}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Multiply 3 and -1 to get -3.
-\frac{3}{5}\sqrt{2}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Fraction \frac{-3}{5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
-\frac{3}{5}\sqrt{2}+\sqrt{2}\sqrt{3}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-\frac{3}{5}\sqrt{2}+2\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{3}+5\sqrt{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-\frac{3}{5}\sqrt{2}+\frac{2\left(-1\right)}{5}\left(-3\right)\sqrt{3}+5\sqrt{2}
Express 2\left(-\frac{1}{5}\right) as a single fraction.
-\frac{3}{5}\sqrt{2}+\frac{-2}{5}\left(-3\right)\sqrt{3}+5\sqrt{2}
Multiply 2 and -1 to get -2.
-\frac{3}{5}\sqrt{2}-\frac{2}{5}\left(-3\right)\sqrt{3}+5\sqrt{2}
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
-\frac{3}{5}\sqrt{2}+\frac{-2\left(-3\right)}{5}\sqrt{3}+5\sqrt{2}
Express -\frac{2}{5}\left(-3\right) as a single fraction.
-\frac{3}{5}\sqrt{2}+\frac{6}{5}\sqrt{3}+5\sqrt{2}
Multiply -2 and -3 to get 6.
\frac{22}{5}\sqrt{2}+\frac{6}{5}\sqrt{3}
Combine -\frac{3}{5}\sqrt{2} and 5\sqrt{2} to get \frac{22}{5}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}