Evaluate
15\sqrt{2}-22\sqrt{3}\approx -16.891914331
Share
Copied to clipboard
3\sqrt{6}\sqrt{2}+5\sqrt{6}\sqrt{3}-7\sqrt{48}
Use the distributive property to multiply \sqrt{6} by 3\sqrt{2}+5\sqrt{3}.
3\sqrt{2}\sqrt{3}\sqrt{2}+5\sqrt{6}\sqrt{3}-7\sqrt{48}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
3\times 2\sqrt{3}+5\sqrt{6}\sqrt{3}-7\sqrt{48}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6\sqrt{3}+5\sqrt{6}\sqrt{3}-7\sqrt{48}
Multiply 3 and 2 to get 6.
6\sqrt{3}+5\sqrt{3}\sqrt{2}\sqrt{3}-7\sqrt{48}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
6\sqrt{3}+5\times 3\sqrt{2}-7\sqrt{48}
Multiply \sqrt{3} and \sqrt{3} to get 3.
6\sqrt{3}+15\sqrt{2}-7\sqrt{48}
Multiply 5 and 3 to get 15.
6\sqrt{3}+15\sqrt{2}-7\times 4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
6\sqrt{3}+15\sqrt{2}-28\sqrt{3}
Multiply -7 and 4 to get -28.
-22\sqrt{3}+15\sqrt{2}
Combine 6\sqrt{3} and -28\sqrt{3} to get -22\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}