Solve for y
y=6
Graph
Share
Copied to clipboard
\left(\sqrt{5y-14}\right)^{2}=\left(\sqrt{2y+4}\right)^{2}
Square both sides of the equation.
5y-14=\left(\sqrt{2y+4}\right)^{2}
Calculate \sqrt{5y-14} to the power of 2 and get 5y-14.
5y-14=2y+4
Calculate \sqrt{2y+4} to the power of 2 and get 2y+4.
5y-14-2y=4
Subtract 2y from both sides.
3y-14=4
Combine 5y and -2y to get 3y.
3y=4+14
Add 14 to both sides.
3y=18
Add 4 and 14 to get 18.
y=\frac{18}{3}
Divide both sides by 3.
y=6
Divide 18 by 3 to get 6.
\sqrt{5\times 6-14}=\sqrt{2\times 6+4}
Substitute 6 for y in the equation \sqrt{5y-14}=\sqrt{2y+4}.
4=4
Simplify. The value y=6 satisfies the equation.
y=6
Equation \sqrt{5y-14}=\sqrt{2y+4} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}