Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{5y+1}=2+\sqrt{y+1}
Subtract -\sqrt{y+1} from both sides of the equation.
\left(\sqrt{5y+1}\right)^{2}=\left(2+\sqrt{y+1}\right)^{2}
Square both sides of the equation.
5y+1=\left(2+\sqrt{y+1}\right)^{2}
Calculate \sqrt{5y+1} to the power of 2 and get 5y+1.
5y+1=4+4\sqrt{y+1}+\left(\sqrt{y+1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{y+1}\right)^{2}.
5y+1=4+4\sqrt{y+1}+y+1
Calculate \sqrt{y+1} to the power of 2 and get y+1.
5y+1=5+4\sqrt{y+1}+y
Add 4 and 1 to get 5.
5y+1-\left(5+y\right)=4\sqrt{y+1}
Subtract 5+y from both sides of the equation.
5y+1-5-y=4\sqrt{y+1}
To find the opposite of 5+y, find the opposite of each term.
5y-4-y=4\sqrt{y+1}
Subtract 5 from 1 to get -4.
4y-4=4\sqrt{y+1}
Combine 5y and -y to get 4y.
\left(4y-4\right)^{2}=\left(4\sqrt{y+1}\right)^{2}
Square both sides of the equation.
16y^{2}-32y+16=\left(4\sqrt{y+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4y-4\right)^{2}.
16y^{2}-32y+16=4^{2}\left(\sqrt{y+1}\right)^{2}
Expand \left(4\sqrt{y+1}\right)^{2}.
16y^{2}-32y+16=16\left(\sqrt{y+1}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16y^{2}-32y+16=16\left(y+1\right)
Calculate \sqrt{y+1} to the power of 2 and get y+1.
16y^{2}-32y+16=16y+16
Use the distributive property to multiply 16 by y+1.
16y^{2}-32y+16-16y=16
Subtract 16y from both sides.
16y^{2}-48y+16=16
Combine -32y and -16y to get -48y.
16y^{2}-48y+16-16=0
Subtract 16 from both sides.
16y^{2}-48y=0
Subtract 16 from 16 to get 0.
y\left(16y-48\right)=0
Factor out y.
y=0 y=3
To find equation solutions, solve y=0 and 16y-48=0.
\sqrt{5\times 0+1}-\sqrt{0+1}=2
Substitute 0 for y in the equation \sqrt{5y+1}-\sqrt{y+1}=2.
0=2
Simplify. The value y=0 does not satisfy the equation.
\sqrt{5\times 3+1}-\sqrt{3+1}=2
Substitute 3 for y in the equation \sqrt{5y+1}-\sqrt{y+1}=2.
2=2
Simplify. The value y=3 satisfies the equation.
y=3
Equation \sqrt{5y+1}=\sqrt{y+1}+2 has a unique solution.