Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{5y+1}=20+\sqrt{3y-5}
Subtract -\sqrt{3y-5} from both sides of the equation.
\left(\sqrt{5y+1}\right)^{2}=\left(20+\sqrt{3y-5}\right)^{2}
Square both sides of the equation.
5y+1=\left(20+\sqrt{3y-5}\right)^{2}
Calculate \sqrt{5y+1} to the power of 2 and get 5y+1.
5y+1=400+40\sqrt{3y-5}+\left(\sqrt{3y-5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(20+\sqrt{3y-5}\right)^{2}.
5y+1=400+40\sqrt{3y-5}+3y-5
Calculate \sqrt{3y-5} to the power of 2 and get 3y-5.
5y+1=395+40\sqrt{3y-5}+3y
Subtract 5 from 400 to get 395.
5y+1-\left(395+3y\right)=40\sqrt{3y-5}
Subtract 395+3y from both sides of the equation.
5y+1-395-3y=40\sqrt{3y-5}
To find the opposite of 395+3y, find the opposite of each term.
5y-394-3y=40\sqrt{3y-5}
Subtract 395 from 1 to get -394.
2y-394=40\sqrt{3y-5}
Combine 5y and -3y to get 2y.
\left(2y-394\right)^{2}=\left(40\sqrt{3y-5}\right)^{2}
Square both sides of the equation.
4y^{2}-1576y+155236=\left(40\sqrt{3y-5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-394\right)^{2}.
4y^{2}-1576y+155236=40^{2}\left(\sqrt{3y-5}\right)^{2}
Expand \left(40\sqrt{3y-5}\right)^{2}.
4y^{2}-1576y+155236=1600\left(\sqrt{3y-5}\right)^{2}
Calculate 40 to the power of 2 and get 1600.
4y^{2}-1576y+155236=1600\left(3y-5\right)
Calculate \sqrt{3y-5} to the power of 2 and get 3y-5.
4y^{2}-1576y+155236=4800y-8000
Use the distributive property to multiply 1600 by 3y-5.
4y^{2}-1576y+155236-4800y=-8000
Subtract 4800y from both sides.
4y^{2}-6376y+155236=-8000
Combine -1576y and -4800y to get -6376y.
4y^{2}-6376y+155236+8000=0
Add 8000 to both sides.
4y^{2}-6376y+163236=0
Add 155236 and 8000 to get 163236.
y=\frac{-\left(-6376\right)±\sqrt{\left(-6376\right)^{2}-4\times 4\times 163236}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -6376 for b, and 163236 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6376\right)±\sqrt{40653376-4\times 4\times 163236}}{2\times 4}
Square -6376.
y=\frac{-\left(-6376\right)±\sqrt{40653376-16\times 163236}}{2\times 4}
Multiply -4 times 4.
y=\frac{-\left(-6376\right)±\sqrt{40653376-2611776}}{2\times 4}
Multiply -16 times 163236.
y=\frac{-\left(-6376\right)±\sqrt{38041600}}{2\times 4}
Add 40653376 to -2611776.
y=\frac{-\left(-6376\right)±160\sqrt{1486}}{2\times 4}
Take the square root of 38041600.
y=\frac{6376±160\sqrt{1486}}{2\times 4}
The opposite of -6376 is 6376.
y=\frac{6376±160\sqrt{1486}}{8}
Multiply 2 times 4.
y=\frac{160\sqrt{1486}+6376}{8}
Now solve the equation y=\frac{6376±160\sqrt{1486}}{8} when ± is plus. Add 6376 to 160\sqrt{1486}.
y=20\sqrt{1486}+797
Divide 6376+160\sqrt{1486} by 8.
y=\frac{6376-160\sqrt{1486}}{8}
Now solve the equation y=\frac{6376±160\sqrt{1486}}{8} when ± is minus. Subtract 160\sqrt{1486} from 6376.
y=797-20\sqrt{1486}
Divide 6376-160\sqrt{1486} by 8.
y=20\sqrt{1486}+797 y=797-20\sqrt{1486}
The equation is now solved.
\sqrt{5\left(20\sqrt{1486}+797\right)+1}-\sqrt{3\left(20\sqrt{1486}+797\right)-5}=20
Substitute 20\sqrt{1486}+797 for y in the equation \sqrt{5y+1}-\sqrt{3y-5}=20.
20=20
Simplify. The value y=20\sqrt{1486}+797 satisfies the equation.
\sqrt{5\left(797-20\sqrt{1486}\right)+1}-\sqrt{3\left(797-20\sqrt{1486}\right)-5}=20
Substitute 797-20\sqrt{1486} for y in the equation \sqrt{5y+1}-\sqrt{3y-5}=20.
80-2\times 1486^{\frac{1}{2}}=20
Simplify. The value y=797-20\sqrt{1486} does not satisfy the equation.
\sqrt{5\left(20\sqrt{1486}+797\right)+1}-\sqrt{3\left(20\sqrt{1486}+797\right)-5}=20
Substitute 20\sqrt{1486}+797 for y in the equation \sqrt{5y+1}-\sqrt{3y-5}=20.
20=20
Simplify. The value y=20\sqrt{1486}+797 satisfies the equation.
y=20\sqrt{1486}+797
Equation \sqrt{5y+1}=\sqrt{3y-5}+20 has a unique solution.