Solve for x
x=2
Graph
Share
Copied to clipboard
\left(\sqrt{5x-1}-\sqrt{3x-2}\right)^{2}=\left(\sqrt{x-1}\right)^{2}
Square both sides of the equation.
\left(\sqrt{5x-1}\right)^{2}-2\sqrt{5x-1}\sqrt{3x-2}+\left(\sqrt{3x-2}\right)^{2}=\left(\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5x-1}-\sqrt{3x-2}\right)^{2}.
5x-1-2\sqrt{5x-1}\sqrt{3x-2}+\left(\sqrt{3x-2}\right)^{2}=\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{5x-1} to the power of 2 and get 5x-1.
5x-1-2\sqrt{5x-1}\sqrt{3x-2}+3x-2=\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{3x-2} to the power of 2 and get 3x-2.
8x-1-2\sqrt{5x-1}\sqrt{3x-2}-2=\left(\sqrt{x-1}\right)^{2}
Combine 5x and 3x to get 8x.
8x-3-2\sqrt{5x-1}\sqrt{3x-2}=\left(\sqrt{x-1}\right)^{2}
Subtract 2 from -1 to get -3.
8x-3-2\sqrt{5x-1}\sqrt{3x-2}=x-1
Calculate \sqrt{x-1} to the power of 2 and get x-1.
-2\sqrt{5x-1}\sqrt{3x-2}=x-1-\left(8x-3\right)
Subtract 8x-3 from both sides of the equation.
-2\sqrt{5x-1}\sqrt{3x-2}=x-1-8x+3
To find the opposite of 8x-3, find the opposite of each term.
-2\sqrt{5x-1}\sqrt{3x-2}=-7x-1+3
Combine x and -8x to get -7x.
-2\sqrt{5x-1}\sqrt{3x-2}=-7x+2
Add -1 and 3 to get 2.
\left(-2\sqrt{5x-1}\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{5x-1}\right)^{2}\left(\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
Expand \left(-2\sqrt{5x-1}\sqrt{3x-2}\right)^{2}.
4\left(\sqrt{5x-1}\right)^{2}\left(\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(5x-1\right)\left(\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
Calculate \sqrt{5x-1} to the power of 2 and get 5x-1.
4\left(5x-1\right)\left(3x-2\right)=\left(-7x+2\right)^{2}
Calculate \sqrt{3x-2} to the power of 2 and get 3x-2.
\left(20x-4\right)\left(3x-2\right)=\left(-7x+2\right)^{2}
Use the distributive property to multiply 4 by 5x-1.
60x^{2}-40x-12x+8=\left(-7x+2\right)^{2}
Apply the distributive property by multiplying each term of 20x-4 by each term of 3x-2.
60x^{2}-52x+8=\left(-7x+2\right)^{2}
Combine -40x and -12x to get -52x.
60x^{2}-52x+8=49x^{2}-28x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-7x+2\right)^{2}.
60x^{2}-52x+8-49x^{2}=-28x+4
Subtract 49x^{2} from both sides.
11x^{2}-52x+8=-28x+4
Combine 60x^{2} and -49x^{2} to get 11x^{2}.
11x^{2}-52x+8+28x=4
Add 28x to both sides.
11x^{2}-24x+8=4
Combine -52x and 28x to get -24x.
11x^{2}-24x+8-4=0
Subtract 4 from both sides.
11x^{2}-24x+4=0
Subtract 4 from 8 to get 4.
a+b=-24 ab=11\times 4=44
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 11x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
-1,-44 -2,-22 -4,-11
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 44.
-1-44=-45 -2-22=-24 -4-11=-15
Calculate the sum for each pair.
a=-22 b=-2
The solution is the pair that gives sum -24.
\left(11x^{2}-22x\right)+\left(-2x+4\right)
Rewrite 11x^{2}-24x+4 as \left(11x^{2}-22x\right)+\left(-2x+4\right).
11x\left(x-2\right)-2\left(x-2\right)
Factor out 11x in the first and -2 in the second group.
\left(x-2\right)\left(11x-2\right)
Factor out common term x-2 by using distributive property.
x=2 x=\frac{2}{11}
To find equation solutions, solve x-2=0 and 11x-2=0.
\sqrt{5\times \frac{2}{11}-1}-\sqrt{3\times \frac{2}{11}-2}=\sqrt{\frac{2}{11}-1}
Substitute \frac{2}{11} for x in the equation \sqrt{5x-1}-\sqrt{3x-2}=\sqrt{x-1}. The expression \sqrt{5\times \frac{2}{11}-1} is undefined because the radicand cannot be negative.
\sqrt{5\times 2-1}-\sqrt{3\times 2-2}=\sqrt{2-1}
Substitute 2 for x in the equation \sqrt{5x-1}-\sqrt{3x-2}=\sqrt{x-1}.
1=1
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{5x-1}-\sqrt{3x-2}=\sqrt{x-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}