Solve for x
x=2
Graph
Share
Copied to clipboard
\left(\sqrt{5x^{2}-6x-4}\right)^{2}=\left(2\left(x-1\right)\right)^{2}
Square both sides of the equation.
5x^{2}-6x-4=\left(2\left(x-1\right)\right)^{2}
Calculate \sqrt{5x^{2}-6x-4} to the power of 2 and get 5x^{2}-6x-4.
5x^{2}-6x-4=\left(2x-2\right)^{2}
Use the distributive property to multiply 2 by x-1.
5x^{2}-6x-4=4x^{2}-8x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-2\right)^{2}.
5x^{2}-6x-4-4x^{2}=-8x+4
Subtract 4x^{2} from both sides.
x^{2}-6x-4=-8x+4
Combine 5x^{2} and -4x^{2} to get x^{2}.
x^{2}-6x-4+8x=4
Add 8x to both sides.
x^{2}+2x-4=4
Combine -6x and 8x to get 2x.
x^{2}+2x-4-4=0
Subtract 4 from both sides.
x^{2}+2x-8=0
Subtract 4 from -4 to get -8.
a+b=2 ab=-8
To solve the equation, factor x^{2}+2x-8 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,8 -2,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -8.
-1+8=7 -2+4=2
Calculate the sum for each pair.
a=-2 b=4
The solution is the pair that gives sum 2.
\left(x-2\right)\left(x+4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=2 x=-4
To find equation solutions, solve x-2=0 and x+4=0.
\sqrt{5\times 2^{2}-6\times 2-4}=2\left(2-1\right)
Substitute 2 for x in the equation \sqrt{5x^{2}-6x-4}=2\left(x-1\right).
2=2
Simplify. The value x=2 satisfies the equation.
\sqrt{5\left(-4\right)^{2}-6\left(-4\right)-4}=2\left(-4-1\right)
Substitute -4 for x in the equation \sqrt{5x^{2}-6x-4}=2\left(x-1\right).
10=-10
Simplify. The value x=-4 does not satisfy the equation because the left and the right hand side have opposite signs.
x=2
Equation \sqrt{5x^{2}-6x-4}=2\left(x-1\right) has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}