Solve for x
x=4
Graph
Share
Copied to clipboard
\sqrt{5x+16}=10-x
Subtract x from both sides of the equation.
\left(\sqrt{5x+16}\right)^{2}=\left(10-x\right)^{2}
Square both sides of the equation.
5x+16=\left(10-x\right)^{2}
Calculate \sqrt{5x+16} to the power of 2 and get 5x+16.
5x+16=100-20x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-x\right)^{2}.
5x+16-100=-20x+x^{2}
Subtract 100 from both sides.
5x-84=-20x+x^{2}
Subtract 100 from 16 to get -84.
5x-84+20x=x^{2}
Add 20x to both sides.
25x-84=x^{2}
Combine 5x and 20x to get 25x.
25x-84-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+25x-84=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=25 ab=-\left(-84\right)=84
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-84. To find a and b, set up a system to be solved.
1,84 2,42 3,28 4,21 6,14 7,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 84.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
Calculate the sum for each pair.
a=21 b=4
The solution is the pair that gives sum 25.
\left(-x^{2}+21x\right)+\left(4x-84\right)
Rewrite -x^{2}+25x-84 as \left(-x^{2}+21x\right)+\left(4x-84\right).
-x\left(x-21\right)+4\left(x-21\right)
Factor out -x in the first and 4 in the second group.
\left(x-21\right)\left(-x+4\right)
Factor out common term x-21 by using distributive property.
x=21 x=4
To find equation solutions, solve x-21=0 and -x+4=0.
\sqrt{5\times 21+16}+21=10
Substitute 21 for x in the equation \sqrt{5x+16}+x=10.
32=10
Simplify. The value x=21 does not satisfy the equation.
\sqrt{5\times 4+16}+4=10
Substitute 4 for x in the equation \sqrt{5x+16}+x=10.
10=10
Simplify. The value x=4 satisfies the equation.
x=4
Equation \sqrt{5x+16}=10-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}