Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{5x+1}-\sqrt{3x-5}\right)^{2}=\left(\sqrt{x+1}\right)^{2}
Square both sides of the equation.
\left(\sqrt{5x+1}\right)^{2}-2\sqrt{5x+1}\sqrt{3x-5}+\left(\sqrt{3x-5}\right)^{2}=\left(\sqrt{x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5x+1}-\sqrt{3x-5}\right)^{2}.
5x+1-2\sqrt{5x+1}\sqrt{3x-5}+\left(\sqrt{3x-5}\right)^{2}=\left(\sqrt{x+1}\right)^{2}
Calculate \sqrt{5x+1} to the power of 2 and get 5x+1.
5x+1-2\sqrt{5x+1}\sqrt{3x-5}+3x-5=\left(\sqrt{x+1}\right)^{2}
Calculate \sqrt{3x-5} to the power of 2 and get 3x-5.
8x+1-2\sqrt{5x+1}\sqrt{3x-5}-5=\left(\sqrt{x+1}\right)^{2}
Combine 5x and 3x to get 8x.
8x-4-2\sqrt{5x+1}\sqrt{3x-5}=\left(\sqrt{x+1}\right)^{2}
Subtract 5 from 1 to get -4.
8x-4-2\sqrt{5x+1}\sqrt{3x-5}=x+1
Calculate \sqrt{x+1} to the power of 2 and get x+1.
-2\sqrt{5x+1}\sqrt{3x-5}=x+1-\left(8x-4\right)
Subtract 8x-4 from both sides of the equation.
-2\sqrt{5x+1}\sqrt{3x-5}=x+1-8x+4
To find the opposite of 8x-4, find the opposite of each term.
-2\sqrt{5x+1}\sqrt{3x-5}=-7x+1+4
Combine x and -8x to get -7x.
-2\sqrt{5x+1}\sqrt{3x-5}=-7x+5
Add 1 and 4 to get 5.
\left(-2\sqrt{5x+1}\sqrt{3x-5}\right)^{2}=\left(-7x+5\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{5x+1}\right)^{2}\left(\sqrt{3x-5}\right)^{2}=\left(-7x+5\right)^{2}
Expand \left(-2\sqrt{5x+1}\sqrt{3x-5}\right)^{2}.
4\left(\sqrt{5x+1}\right)^{2}\left(\sqrt{3x-5}\right)^{2}=\left(-7x+5\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(5x+1\right)\left(\sqrt{3x-5}\right)^{2}=\left(-7x+5\right)^{2}
Calculate \sqrt{5x+1} to the power of 2 and get 5x+1.
4\left(5x+1\right)\left(3x-5\right)=\left(-7x+5\right)^{2}
Calculate \sqrt{3x-5} to the power of 2 and get 3x-5.
\left(20x+4\right)\left(3x-5\right)=\left(-7x+5\right)^{2}
Use the distributive property to multiply 4 by 5x+1.
60x^{2}-100x+12x-20=\left(-7x+5\right)^{2}
Apply the distributive property by multiplying each term of 20x+4 by each term of 3x-5.
60x^{2}-88x-20=\left(-7x+5\right)^{2}
Combine -100x and 12x to get -88x.
60x^{2}-88x-20=49x^{2}-70x+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-7x+5\right)^{2}.
60x^{2}-88x-20-49x^{2}=-70x+25
Subtract 49x^{2} from both sides.
11x^{2}-88x-20=-70x+25
Combine 60x^{2} and -49x^{2} to get 11x^{2}.
11x^{2}-88x-20+70x=25
Add 70x to both sides.
11x^{2}-18x-20=25
Combine -88x and 70x to get -18x.
11x^{2}-18x-20-25=0
Subtract 25 from both sides.
11x^{2}-18x-45=0
Subtract 25 from -20 to get -45.
a+b=-18 ab=11\left(-45\right)=-495
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 11x^{2}+ax+bx-45. To find a and b, set up a system to be solved.
1,-495 3,-165 5,-99 9,-55 11,-45 15,-33
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -495.
1-495=-494 3-165=-162 5-99=-94 9-55=-46 11-45=-34 15-33=-18
Calculate the sum for each pair.
a=-33 b=15
The solution is the pair that gives sum -18.
\left(11x^{2}-33x\right)+\left(15x-45\right)
Rewrite 11x^{2}-18x-45 as \left(11x^{2}-33x\right)+\left(15x-45\right).
11x\left(x-3\right)+15\left(x-3\right)
Factor out 11x in the first and 15 in the second group.
\left(x-3\right)\left(11x+15\right)
Factor out common term x-3 by using distributive property.
x=3 x=-\frac{15}{11}
To find equation solutions, solve x-3=0 and 11x+15=0.
\sqrt{5\left(-\frac{15}{11}\right)+1}-\sqrt{3\left(-\frac{15}{11}\right)-5}=\sqrt{-\frac{15}{11}+1}
Substitute -\frac{15}{11} for x in the equation \sqrt{5x+1}-\sqrt{3x-5}=\sqrt{x+1}. The expression \sqrt{5\left(-\frac{15}{11}\right)+1} is undefined because the radicand cannot be negative.
\sqrt{5\times 3+1}-\sqrt{3\times 3-5}=\sqrt{3+1}
Substitute 3 for x in the equation \sqrt{5x+1}-\sqrt{3x-5}=\sqrt{x+1}.
2=2
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{5x+1}-\sqrt{3x-5}=\sqrt{x+1} has a unique solution.