Solve for v
v=5
Share
Copied to clipboard
\sqrt{5v+16}=\sqrt{7v+6}
Subtract -\sqrt{7v+6} from both sides of the equation.
\left(\sqrt{5v+16}\right)^{2}=\left(\sqrt{7v+6}\right)^{2}
Square both sides of the equation.
5v+16=\left(\sqrt{7v+6}\right)^{2}
Calculate \sqrt{5v+16} to the power of 2 and get 5v+16.
5v+16=7v+6
Calculate \sqrt{7v+6} to the power of 2 and get 7v+6.
5v+16-7v=6
Subtract 7v from both sides.
-2v+16=6
Combine 5v and -7v to get -2v.
-2v=6-16
Subtract 16 from both sides.
-2v=-10
Subtract 16 from 6 to get -10.
v=\frac{-10}{-2}
Divide both sides by -2.
v=5
Divide -10 by -2 to get 5.
\sqrt{5\times 5+16}-\sqrt{7\times 5+6}=0
Substitute 5 for v in the equation \sqrt{5v+16}-\sqrt{7v+6}=0.
0=0
Simplify. The value v=5 satisfies the equation.
v=5
Equation \sqrt{5v+16}=\sqrt{7v+6} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}