Solve for u
u=4
Share
Copied to clipboard
\left(\sqrt{5u+3}\right)^{2}=\left(\sqrt{2u+15}\right)^{2}
Square both sides of the equation.
5u+3=\left(\sqrt{2u+15}\right)^{2}
Calculate \sqrt{5u+3} to the power of 2 and get 5u+3.
5u+3=2u+15
Calculate \sqrt{2u+15} to the power of 2 and get 2u+15.
5u+3-2u=15
Subtract 2u from both sides.
3u+3=15
Combine 5u and -2u to get 3u.
3u=15-3
Subtract 3 from both sides.
3u=12
Subtract 3 from 15 to get 12.
u=\frac{12}{3}
Divide both sides by 3.
u=4
Divide 12 by 3 to get 4.
\sqrt{5\times 4+3}=\sqrt{2\times 4+15}
Substitute 4 for u in the equation \sqrt{5u+3}=\sqrt{2u+15}.
23^{\frac{1}{2}}=23^{\frac{1}{2}}
Simplify. The value u=4 satisfies the equation.
u=4
Equation \sqrt{5u+3}=\sqrt{2u+15} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}