Solve for x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
\sqrt{5-x}=\sqrt{2x}
Subtract -\sqrt{2x} from both sides of the equation.
\left(\sqrt{5-x}\right)^{2}=\left(\sqrt{2x}\right)^{2}
Square both sides of the equation.
5-x=\left(\sqrt{2x}\right)^{2}
Calculate \sqrt{5-x} to the power of 2 and get 5-x.
5-x=2x
Calculate \sqrt{2x} to the power of 2 and get 2x.
5-x-2x=0
Subtract 2x from both sides.
5-3x=0
Combine -x and -2x to get -3x.
-3x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-5}{-3}
Divide both sides by -3.
x=\frac{5}{3}
Fraction \frac{-5}{-3} can be simplified to \frac{5}{3} by removing the negative sign from both the numerator and the denominator.
\sqrt{5-\frac{5}{3}}-\sqrt{2\times \frac{5}{3}}=0
Substitute \frac{5}{3} for x in the equation \sqrt{5-x}-\sqrt{2x}=0.
0=0
Simplify. The value x=\frac{5}{3} satisfies the equation.
x=\frac{5}{3}
Equation \sqrt{5-x}=\sqrt{2x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}