Solve for x
x=4
x=3
Graph
Quiz
Algebra
5 problems similar to:
\sqrt { 5 - x } + \sqrt { 5 + x } = \frac { 12 } { \sqrt { 5 + x } }
Share
Copied to clipboard
\sqrt{5-x}=\frac{12}{\sqrt{5+x}}-\sqrt{5+x}
Subtract \sqrt{5+x} from both sides of the equation.
\left(\sqrt{5-x}\right)^{2}=\left(\frac{12}{\sqrt{5+x}}-\sqrt{5+x}\right)^{2}
Square both sides of the equation.
5-x=\left(\frac{12}{\sqrt{5+x}}-\sqrt{5+x}\right)^{2}
Calculate \sqrt{5-x} to the power of 2 and get 5-x.
5-x=\left(\frac{12}{\sqrt{5+x}}\right)^{2}-2\times \frac{12}{\sqrt{5+x}}\sqrt{5+x}+\left(\sqrt{5+x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{12}{\sqrt{5+x}}-\sqrt{5+x}\right)^{2}.
5-x=\frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}}-2\times \frac{12}{\sqrt{5+x}}\sqrt{5+x}+\left(\sqrt{5+x}\right)^{2}
To raise \frac{12}{\sqrt{5+x}} to a power, raise both numerator and denominator to the power and then divide.
5-x=\frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-2\times 12}{\sqrt{5+x}}\sqrt{5+x}+\left(\sqrt{5+x}\right)^{2}
Express -2\times \frac{12}{\sqrt{5+x}} as a single fraction.
5-x=\frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-2\times 12\sqrt{5+x}}{\sqrt{5+x}}+\left(\sqrt{5+x}\right)^{2}
Express \frac{-2\times 12}{\sqrt{5+x}}\sqrt{5+x} as a single fraction.
5-x=\frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-2\times 12\sqrt{5+x}}{\sqrt{5+x}}+5+x
Calculate \sqrt{5+x} to the power of 2 and get 5+x.
5-x=\frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-2\times 12\sqrt{5+x}}{\sqrt{5+x}}+\frac{\left(5+x\right)\left(\sqrt{5+x}\right)^{2}}{\left(\sqrt{5+x}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5+x times \frac{\left(\sqrt{5+x}\right)^{2}}{\left(\sqrt{5+x}\right)^{2}}.
5-x=\frac{12^{2}+\left(5+x\right)\left(\sqrt{5+x}\right)^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-2\times 12\sqrt{5+x}}{\sqrt{5+x}}
Since \frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}} and \frac{\left(5+x\right)\left(\sqrt{5+x}\right)^{2}}{\left(\sqrt{5+x}\right)^{2}} have the same denominator, add them by adding their numerators.
5-x=\frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-2\times 12\sqrt{5+x}}{\sqrt{5+x}}+\frac{\left(5+x\right)\left(\sqrt{5+x}\right)^{2}}{\left(\sqrt{5+x}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5+x times \frac{\left(\sqrt{5+x}\right)^{2}}{\left(\sqrt{5+x}\right)^{2}}.
5-x=\frac{12^{2}+\left(5+x\right)\left(\sqrt{5+x}\right)^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-2\times 12\sqrt{5+x}}{\sqrt{5+x}}
Since \frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}} and \frac{\left(5+x\right)\left(\sqrt{5+x}\right)^{2}}{\left(\sqrt{5+x}\right)^{2}} have the same denominator, add them by adding their numerators.
5-x=\frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-2\times 12\sqrt{5+x}}{\sqrt{5+x}}+\frac{\left(5+x\right)\sqrt{5+x}}{\sqrt{5+x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5+x times \frac{\sqrt{5+x}}{\sqrt{5+x}}.
5-x=\frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-2\times 12\sqrt{5+x}+\left(5+x\right)\sqrt{5+x}}{\sqrt{5+x}}
Since \frac{-2\times 12\sqrt{5+x}}{\sqrt{5+x}} and \frac{\left(5+x\right)\sqrt{5+x}}{\sqrt{5+x}} have the same denominator, add them by adding their numerators.
5-x=\frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-24\sqrt{5+x}+5\sqrt{5+x}+x\sqrt{5+x}}{\sqrt{5+x}}
Do the multiplications in -2\times 12\sqrt{5+x}+\left(5+x\right)\sqrt{5+x}.
5-x=\frac{12^{2}}{\left(\sqrt{5+x}\right)^{2}}+\frac{-19\sqrt{5+x}+x\sqrt{5+x}}{\sqrt{5+x}}
Combine like terms in -24\sqrt{5+x}+5\sqrt{5+x}+x\sqrt{5+x}.
5-x=\frac{144}{\left(\sqrt{5+x}\right)^{2}}+\frac{-19\sqrt{5+x}+x\sqrt{5+x}}{\sqrt{5+x}}
Calculate 12 to the power of 2 and get 144.
5-x=\frac{144}{5+x}+\frac{-19\sqrt{5+x}+x\sqrt{5+x}}{\sqrt{5+x}}
Calculate \sqrt{5+x} to the power of 2 and get 5+x.
\left(x+5\right)\times 5-x\left(x+5\right)=144+\left(x+5\right)^{\frac{1}{2}}\left(-19\sqrt{5+x}+x\sqrt{5+x}\right)
Multiply both sides of the equation by x+5.
-x\left(x+5\right)+5\left(x+5\right)=\sqrt{x+5}\left(\sqrt{x+5}x-19\sqrt{x+5}\right)+144
Reorder the terms.
-x^{2}-5x+5\left(x+5\right)=\sqrt{x+5}\left(\sqrt{x+5}x-19\sqrt{x+5}\right)+144
Use the distributive property to multiply -x by x+5.
-x^{2}-5x+5x+25=\sqrt{x+5}\left(\sqrt{x+5}x-19\sqrt{x+5}\right)+144
Use the distributive property to multiply 5 by x+5.
-x^{2}+25=\sqrt{x+5}\left(\sqrt{x+5}x-19\sqrt{x+5}\right)+144
Combine -5x and 5x to get 0.
-x^{2}+25=x\left(\sqrt{x+5}\right)^{2}-19\left(\sqrt{x+5}\right)^{2}+144
Use the distributive property to multiply \sqrt{x+5} by \sqrt{x+5}x-19\sqrt{x+5}.
-x^{2}+25=x\left(x+5\right)-19\left(\sqrt{x+5}\right)^{2}+144
Calculate \sqrt{x+5} to the power of 2 and get x+5.
-x^{2}+25=x^{2}+5x-19\left(\sqrt{x+5}\right)^{2}+144
Use the distributive property to multiply x by x+5.
-x^{2}+25=x^{2}+5x-19\left(x+5\right)+144
Calculate \sqrt{x+5} to the power of 2 and get x+5.
-x^{2}+25=x^{2}+5x-19x-95+144
Use the distributive property to multiply -19 by x+5.
-x^{2}+25=x^{2}-14x-95+144
Combine 5x and -19x to get -14x.
-x^{2}+25=x^{2}-14x+49
Add -95 and 144 to get 49.
-x^{2}+25-x^{2}=-14x+49
Subtract x^{2} from both sides.
-2x^{2}+25=-14x+49
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}+25+14x=49
Add 14x to both sides.
-2x^{2}+25+14x-49=0
Subtract 49 from both sides.
-2x^{2}-24+14x=0
Subtract 49 from 25 to get -24.
-2x^{2}+14x-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\left(-2\right)\left(-24\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 14 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-2\right)\left(-24\right)}}{2\left(-2\right)}
Square 14.
x=\frac{-14±\sqrt{196+8\left(-24\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-14±\sqrt{196-192}}{2\left(-2\right)}
Multiply 8 times -24.
x=\frac{-14±\sqrt{4}}{2\left(-2\right)}
Add 196 to -192.
x=\frac{-14±2}{2\left(-2\right)}
Take the square root of 4.
x=\frac{-14±2}{-4}
Multiply 2 times -2.
x=-\frac{12}{-4}
Now solve the equation x=\frac{-14±2}{-4} when ± is plus. Add -14 to 2.
x=3
Divide -12 by -4.
x=-\frac{16}{-4}
Now solve the equation x=\frac{-14±2}{-4} when ± is minus. Subtract 2 from -14.
x=4
Divide -16 by -4.
x=3 x=4
The equation is now solved.
\sqrt{5-3}+\sqrt{5+3}=\frac{12}{\sqrt{5+3}}
Substitute 3 for x in the equation \sqrt{5-x}+\sqrt{5+x}=\frac{12}{\sqrt{5+x}}.
3\times 2^{\frac{1}{2}}=3\times 2^{\frac{1}{2}}
Simplify. The value x=3 satisfies the equation.
\sqrt{5-4}+\sqrt{5+4}=\frac{12}{\sqrt{5+4}}
Substitute 4 for x in the equation \sqrt{5-x}+\sqrt{5+x}=\frac{12}{\sqrt{5+x}}.
4=4
Simplify. The value x=4 satisfies the equation.
x=3 x=4
List all solutions of \sqrt{5-x}=-\sqrt{x+5}+\frac{12}{\sqrt{x+5}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}