Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{5-2x}-\sqrt{x+6}\right)^{2}=\left(\sqrt{x+3}\right)^{2}
Square both sides of the equation.
\left(\sqrt{5-2x}\right)^{2}-2\sqrt{5-2x}\sqrt{x+6}+\left(\sqrt{x+6}\right)^{2}=\left(\sqrt{x+3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5-2x}-\sqrt{x+6}\right)^{2}.
5-2x-2\sqrt{5-2x}\sqrt{x+6}+\left(\sqrt{x+6}\right)^{2}=\left(\sqrt{x+3}\right)^{2}
Calculate \sqrt{5-2x} to the power of 2 and get 5-2x.
5-2x-2\sqrt{5-2x}\sqrt{x+6}+x+6=\left(\sqrt{x+3}\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
5-x-2\sqrt{5-2x}\sqrt{x+6}+6=\left(\sqrt{x+3}\right)^{2}
Combine -2x and x to get -x.
11-x-2\sqrt{5-2x}\sqrt{x+6}=\left(\sqrt{x+3}\right)^{2}
Add 5 and 6 to get 11.
11-x-2\sqrt{5-2x}\sqrt{x+6}=x+3
Calculate \sqrt{x+3} to the power of 2 and get x+3.
-2\sqrt{5-2x}\sqrt{x+6}=x+3-\left(11-x\right)
Subtract 11-x from both sides of the equation.
-2\sqrt{5-2x}\sqrt{x+6}=x+3-11+x
To find the opposite of 11-x, find the opposite of each term.
-2\sqrt{5-2x}\sqrt{x+6}=x-8+x
Subtract 11 from 3 to get -8.
-2\sqrt{5-2x}\sqrt{x+6}=2x-8
Combine x and x to get 2x.
\left(-2\sqrt{5-2x}\sqrt{x+6}\right)^{2}=\left(2x-8\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{5-2x}\right)^{2}\left(\sqrt{x+6}\right)^{2}=\left(2x-8\right)^{2}
Expand \left(-2\sqrt{5-2x}\sqrt{x+6}\right)^{2}.
4\left(\sqrt{5-2x}\right)^{2}\left(\sqrt{x+6}\right)^{2}=\left(2x-8\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(5-2x\right)\left(\sqrt{x+6}\right)^{2}=\left(2x-8\right)^{2}
Calculate \sqrt{5-2x} to the power of 2 and get 5-2x.
4\left(5-2x\right)\left(x+6\right)=\left(2x-8\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
\left(20-8x\right)\left(x+6\right)=\left(2x-8\right)^{2}
Use the distributive property to multiply 4 by 5-2x.
20x+120-8x^{2}-48x=\left(2x-8\right)^{2}
Apply the distributive property by multiplying each term of 20-8x by each term of x+6.
-28x+120-8x^{2}=\left(2x-8\right)^{2}
Combine 20x and -48x to get -28x.
-28x+120-8x^{2}=4x^{2}-32x+64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-8\right)^{2}.
-28x+120-8x^{2}-4x^{2}=-32x+64
Subtract 4x^{2} from both sides.
-28x+120-12x^{2}=-32x+64
Combine -8x^{2} and -4x^{2} to get -12x^{2}.
-28x+120-12x^{2}+32x=64
Add 32x to both sides.
4x+120-12x^{2}=64
Combine -28x and 32x to get 4x.
4x+120-12x^{2}-64=0
Subtract 64 from both sides.
4x+56-12x^{2}=0
Subtract 64 from 120 to get 56.
x+14-3x^{2}=0
Divide both sides by 4.
-3x^{2}+x+14=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=-3\times 14=-42
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+14. To find a and b, set up a system to be solved.
-1,42 -2,21 -3,14 -6,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -42.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Calculate the sum for each pair.
a=7 b=-6
The solution is the pair that gives sum 1.
\left(-3x^{2}+7x\right)+\left(-6x+14\right)
Rewrite -3x^{2}+x+14 as \left(-3x^{2}+7x\right)+\left(-6x+14\right).
-x\left(3x-7\right)-2\left(3x-7\right)
Factor out -x in the first and -2 in the second group.
\left(3x-7\right)\left(-x-2\right)
Factor out common term 3x-7 by using distributive property.
x=\frac{7}{3} x=-2
To find equation solutions, solve 3x-7=0 and -x-2=0.
\sqrt{5-2\times \frac{7}{3}}-\sqrt{\frac{7}{3}+6}=\sqrt{\frac{7}{3}+3}
Substitute \frac{7}{3} for x in the equation \sqrt{5-2x}-\sqrt{x+6}=\sqrt{x+3}.
-\frac{4}{3}\times 3^{\frac{1}{2}}=\frac{4}{3}\times 3^{\frac{1}{2}}
Simplify. The value x=\frac{7}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{5-2\left(-2\right)}-\sqrt{-2+6}=\sqrt{-2+3}
Substitute -2 for x in the equation \sqrt{5-2x}-\sqrt{x+6}=\sqrt{x+3}.
1=1
Simplify. The value x=-2 satisfies the equation.
x=-2
Equation -\sqrt{x+6}+\sqrt{5-2x}=\sqrt{x+3} has a unique solution.