Solve for a
a=-8\sqrt{5}b+\sqrt{5}-4
Solve for b
b=-\frac{\sqrt{5}\left(a+4-\sqrt{5}\right)}{40}
Share
Copied to clipboard
\sqrt{5}-a=4+8\sqrt{5}b
Use the distributive property to multiply 4 by 1+2b\sqrt{5}.
-a=4+8\sqrt{5}b-\sqrt{5}
Subtract \sqrt{5} from both sides.
-a=8\sqrt{5}b+4-\sqrt{5}
The equation is in standard form.
\frac{-a}{-1}=\frac{8\sqrt{5}b+4-\sqrt{5}}{-1}
Divide both sides by -1.
a=\frac{8\sqrt{5}b+4-\sqrt{5}}{-1}
Dividing by -1 undoes the multiplication by -1.
a=-8\sqrt{5}b+\sqrt{5}-4
Divide 4+8\sqrt{5}b-\sqrt{5} by -1.
\sqrt{5}-a=4+8\sqrt{5}b
Use the distributive property to multiply 4 by 1+2b\sqrt{5}.
4+8\sqrt{5}b=\sqrt{5}-a
Swap sides so that all variable terms are on the left hand side.
8\sqrt{5}b=\sqrt{5}-a-4
Subtract 4 from both sides.
8\sqrt{5}b=-a+\sqrt{5}-4
The equation is in standard form.
\frac{8\sqrt{5}b}{8\sqrt{5}}=\frac{-a+\sqrt{5}-4}{8\sqrt{5}}
Divide both sides by 8\sqrt{5}.
b=\frac{-a+\sqrt{5}-4}{8\sqrt{5}}
Dividing by 8\sqrt{5} undoes the multiplication by 8\sqrt{5}.
b=\frac{\sqrt{5}\left(-a+\sqrt{5}-4\right)}{40}
Divide \sqrt{5}-a-4 by 8\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}