Evaluate
2\sqrt{10}+23\approx 29.32455532
Share
Copied to clipboard
3\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{2}+\sqrt{2}\left(2\sqrt{8}+\sqrt{5}\right)
Use the distributive property to multiply \sqrt{5} by 3\sqrt{5}+\sqrt{2}.
3\times 5+\sqrt{5}\sqrt{2}+\sqrt{2}\left(2\sqrt{8}+\sqrt{5}\right)
The square of \sqrt{5} is 5.
15+\sqrt{5}\sqrt{2}+\sqrt{2}\left(2\sqrt{8}+\sqrt{5}\right)
Multiply 3 and 5 to get 15.
15+\sqrt{10}+\sqrt{2}\left(2\sqrt{8}+\sqrt{5}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
15+\sqrt{10}+\sqrt{2}\left(2\times 2\sqrt{2}+\sqrt{5}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
15+\sqrt{10}+\sqrt{2}\left(4\sqrt{2}+\sqrt{5}\right)
Multiply 2 and 2 to get 4.
15+\sqrt{10}+4\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{5}
Use the distributive property to multiply \sqrt{2} by 4\sqrt{2}+\sqrt{5}.
15+\sqrt{10}+4\times 2+\sqrt{2}\sqrt{5}
The square of \sqrt{2} is 2.
15+\sqrt{10}+8+\sqrt{2}\sqrt{5}
Multiply 4 and 2 to get 8.
15+\sqrt{10}+8+\sqrt{10}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
23+\sqrt{10}+\sqrt{10}
Add 15 and 8 to get 23.
23+2\sqrt{10}
Combine \sqrt{10} and \sqrt{10} to get 2\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}