Evaluate
4\sqrt{3}\approx 6.92820323
Share
Copied to clipboard
\sqrt{5}\left(\sqrt{15}-\frac{\sqrt{3}}{\sqrt{5}}\right)
Rewrite the square root of the division \sqrt{\frac{3}{5}} as the division of square roots \frac{\sqrt{3}}{\sqrt{5}}.
\sqrt{5}\left(\sqrt{15}-\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\sqrt{5}\left(\sqrt{15}-\frac{\sqrt{3}\sqrt{5}}{5}\right)
The square of \sqrt{5} is 5.
\sqrt{5}\left(\sqrt{15}-\frac{\sqrt{15}}{5}\right)
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\sqrt{5}\left(\frac{5\sqrt{15}}{5}-\frac{\sqrt{15}}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{15} times \frac{5}{5}.
\sqrt{5}\times \frac{5\sqrt{15}-\sqrt{15}}{5}
Since \frac{5\sqrt{15}}{5} and \frac{\sqrt{15}}{5} have the same denominator, subtract them by subtracting their numerators.
\sqrt{5}\times \frac{4\sqrt{15}}{5}
Do the calculations in 5\sqrt{15}-\sqrt{15}.
\frac{\sqrt{5}\times 4\sqrt{15}}{5}
Express \sqrt{5}\times \frac{4\sqrt{15}}{5} as a single fraction.
\frac{\sqrt{5}\times 4\sqrt{5}\sqrt{3}}{5}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{5\times 4\sqrt{3}}{5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{20\sqrt{3}}{5}
Multiply 5 and 4 to get 20.
4\sqrt{3}
Divide 20\sqrt{3} by 5 to get 4\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}