Evaluate
1-2\sqrt{5}\approx -3.472135955
Share
Copied to clipboard
\sqrt{5}\left(\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-2\right)
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\sqrt{5}\left(\frac{\sqrt{5}}{5}-2\right)
The square of \sqrt{5} is 5.
\sqrt{5}\left(\frac{\sqrt{5}}{5}-\frac{2\times 5}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\sqrt{5}\times \frac{\sqrt{5}-2\times 5}{5}
Since \frac{\sqrt{5}}{5} and \frac{2\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
\sqrt{5}\times \frac{\sqrt{5}-10}{5}
Do the multiplications in \sqrt{5}-2\times 5.
\frac{\sqrt{5}\left(\sqrt{5}-10\right)}{5}
Express \sqrt{5}\times \frac{\sqrt{5}-10}{5} as a single fraction.
\frac{\left(\sqrt{5}\right)^{2}-10\sqrt{5}}{5}
Use the distributive property to multiply \sqrt{5} by \sqrt{5}-10.
\frac{5-10\sqrt{5}}{5}
The square of \sqrt{5} is 5.
1-2\sqrt{5}
Divide each term of 5-10\sqrt{5} by 5 to get 1-2\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}