Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{5}\left(\frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-3\sqrt{10}\right)
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\sqrt{5}\left(\frac{\sqrt{2}\sqrt{5}}{5}-3\sqrt{10}\right)
The square of \sqrt{5} is 5.
\sqrt{5}\left(\frac{\sqrt{10}}{5}-3\sqrt{10}\right)
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\sqrt{5}\left(-\frac{14}{5}\right)\sqrt{10}
Combine \frac{\sqrt{10}}{5} and -3\sqrt{10} to get -\frac{14}{5}\sqrt{10}.
\sqrt{5}\left(-\frac{14}{5}\right)\sqrt{5}\sqrt{2}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
5\left(-\frac{14}{5}\right)\sqrt{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
-14\sqrt{2}
Cancel out 5 and 5.