\sqrt { 5 } = 2.236 \text { evaluate } \frac { 3 - \sqrt { 5 } } { 3 + 2 \sqrt { 5 } }
Solve for l
l=\frac{125\left(19\sqrt{5}+45\right)}{1118tuv\left(ea\right)^{2}}
a\neq 0\text{ and }t\neq 0\text{ and }u\neq 0\text{ and }v\neq 0
Solve for a (complex solution)
a=-\frac{5\sqrt{106210\sqrt{5}+251550}l^{-0.5}t^{-0.5}u^{-0.5}v^{-0.5}}{1118e}
a=\frac{5\sqrt{106210\sqrt{5}+251550}l^{-0.5}t^{-0.5}u^{-0.5}v^{-0.5}}{1118e}\text{, }t\neq 0\text{ and }u\neq 0\text{ and }l\neq 0\text{ and }v\neq 0
Share
Copied to clipboard
\sqrt{5}=2.236e^{2}valuat\times \frac{3-\sqrt{5}}{3+2\sqrt{5}}
Multiply e and e to get e^{2}.
\sqrt{5}=2.236e^{2}va^{2}lut\times \frac{3-\sqrt{5}}{3+2\sqrt{5}}
Multiply a and a to get a^{2}.
\sqrt{5}=2.236e^{2}va^{2}lut\times \frac{\left(3-\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{\left(3+2\sqrt{5}\right)\left(3-2\sqrt{5}\right)}
Rationalize the denominator of \frac{3-\sqrt{5}}{3+2\sqrt{5}} by multiplying numerator and denominator by 3-2\sqrt{5}.
\sqrt{5}=2.236e^{2}va^{2}lut\times \frac{\left(3-\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{3^{2}-\left(2\sqrt{5}\right)^{2}}
Consider \left(3+2\sqrt{5}\right)\left(3-2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{5}=2.236e^{2}va^{2}lut\times \frac{\left(3-\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{9-\left(2\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\sqrt{5}=2.236e^{2}va^{2}lut\times \frac{\left(3-\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{9-2^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\sqrt{5}=2.236e^{2}va^{2}lut\times \frac{\left(3-\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{9-4\left(\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\sqrt{5}=2.236e^{2}va^{2}lut\times \frac{\left(3-\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{9-4\times 5}
The square of \sqrt{5} is 5.
\sqrt{5}=2.236e^{2}va^{2}lut\times \frac{\left(3-\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{9-20}
Multiply 4 and 5 to get 20.
\sqrt{5}=2.236e^{2}va^{2}lut\times \frac{\left(3-\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{-11}
Subtract 20 from 9 to get -11.
\sqrt{5}=2.236\times \frac{e^{2}\left(3-\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{-11}va^{2}lut
Express e^{2}\times \frac{\left(3-\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{-11} as a single fraction.
\sqrt{5}=2.236\times \frac{\left(3e^{2}-e^{2}\sqrt{5}\right)\left(3-2\sqrt{5}\right)}{-11}va^{2}lut
Use the distributive property to multiply e^{2} by 3-\sqrt{5}.
\sqrt{5}=2.236\times \frac{9e^{2}-9e^{2}\sqrt{5}+2e^{2}\left(\sqrt{5}\right)^{2}}{-11}va^{2}lut
Use the distributive property to multiply 3e^{2}-e^{2}\sqrt{5} by 3-2\sqrt{5} and combine like terms.
\sqrt{5}=2.236\times \frac{9e^{2}-9e^{2}\sqrt{5}+2e^{2}\times 5}{-11}va^{2}lut
The square of \sqrt{5} is 5.
\sqrt{5}=2.236\times \frac{9e^{2}-9e^{2}\sqrt{5}+10e^{2}}{-11}va^{2}lut
Multiply 2 and 5 to get 10.
\sqrt{5}=2.236\times \frac{19e^{2}-9e^{2}\sqrt{5}}{-11}va^{2}lut
Combine 9e^{2} and 10e^{2} to get 19e^{2}.
\sqrt{5}=2.236\times \frac{\left(19e^{2}-9e^{2}\sqrt{5}\right)v}{-11}a^{2}lut
Express \frac{19e^{2}-9e^{2}\sqrt{5}}{-11}v as a single fraction.
\sqrt{5}=2.236\times \frac{\left(19e^{2}-9e^{2}\sqrt{5}\right)va^{2}}{-11}lut
Express \frac{\left(19e^{2}-9e^{2}\sqrt{5}\right)v}{-11}a^{2} as a single fraction.
\sqrt{5}=2.236\times \frac{\left(19e^{2}-9e^{2}\sqrt{5}\right)va^{2}l}{-11}ut
Express \frac{\left(19e^{2}-9e^{2}\sqrt{5}\right)va^{2}}{-11}l as a single fraction.
\sqrt{5}=2.236\times \frac{\left(19e^{2}-9e^{2}\sqrt{5}\right)va^{2}lu}{-11}t
Express \frac{\left(19e^{2}-9e^{2}\sqrt{5}\right)va^{2}l}{-11}u as a single fraction.
\sqrt{5}=2.236\times \frac{\left(19e^{2}-9e^{2}\sqrt{5}\right)va^{2}lut}{-11}
Express \frac{\left(19e^{2}-9e^{2}\sqrt{5}\right)va^{2}lu}{-11}t as a single fraction.
-11\sqrt{5}=2.236\left(19e^{2}-9e^{2}\sqrt{5}\right)va^{2}lut
Multiply both sides of the equation by -11.
-11\sqrt{5}=2.236\left(-9\sqrt{5}e^{2}+19e^{2}\right)ltuva^{2}
Reorder the terms.
-11\sqrt{5}=\left(-20.124e^{2}\sqrt{5}+42.484e^{2}\right)ltuva^{2}
Use the distributive property to multiply 2.236 by -9\sqrt{5}e^{2}+19e^{2}.
-11\sqrt{5}=\left(-20.124e^{2}\sqrt{5}l+42.484e^{2}l\right)tuva^{2}
Use the distributive property to multiply -20.124e^{2}\sqrt{5}+42.484e^{2} by l.
-11\sqrt{5}=\left(-20.124e^{2}\sqrt{5}lt+42.484e^{2}lt\right)uva^{2}
Use the distributive property to multiply -20.124e^{2}\sqrt{5}l+42.484e^{2}l by t.
-11\sqrt{5}=\left(-20.124e^{2}\sqrt{5}ltu+42.484e^{2}ltu\right)va^{2}
Use the distributive property to multiply -20.124e^{2}\sqrt{5}lt+42.484e^{2}lt by u.
-11\sqrt{5}=\left(-20.124e^{2}\sqrt{5}ltuv+42.484e^{2}ltuv\right)a^{2}
Use the distributive property to multiply -20.124e^{2}\sqrt{5}ltu+42.484e^{2}ltu by v.
-11\sqrt{5}=-20.124e^{2}\sqrt{5}ltuva^{2}+42.484e^{2}ltuva^{2}
Use the distributive property to multiply -20.124e^{2}\sqrt{5}ltuv+42.484e^{2}ltuv by a^{2}.
-20.124e^{2}\sqrt{5}ltuva^{2}+42.484e^{2}ltuva^{2}=-11\sqrt{5}
Swap sides so that all variable terms are on the left hand side.
\left(-20.124e^{2}\sqrt{5}tuva^{2}+42.484e^{2}tuva^{2}\right)l=-11\sqrt{5}
Combine all terms containing l.
\frac{-5031\sqrt{5}e^{2}tuva^{2}+10621e^{2}tuva^{2}}{250}l=-11\sqrt{5}
The equation is in standard form.
\frac{250\times \frac{-5031\sqrt{5}e^{2}tuva^{2}+10621e^{2}tuva^{2}}{250}l}{-5031\sqrt{5}e^{2}tuva^{2}+10621e^{2}tuva^{2}}=\frac{250\left(-11\sqrt{5}\right)}{-5031\sqrt{5}e^{2}tuva^{2}+10621e^{2}tuva^{2}}
Divide both sides by -20.124e^{2}\sqrt{5}tuva^{2}+42.484e^{2}tuva^{2}.
l=\frac{250\left(-11\sqrt{5}\right)}{-5031\sqrt{5}e^{2}tuva^{2}+10621e^{2}tuva^{2}}
Dividing by -20.124e^{2}\sqrt{5}tuva^{2}+42.484e^{2}tuva^{2} undoes the multiplication by -20.124e^{2}\sqrt{5}tuva^{2}+42.484e^{2}tuva^{2}.
l=\frac{15625\left(\frac{10621\sqrt{5}}{250}+100.62\right)}{312481tuv\left(ea\right)^{2}}
Divide -11\sqrt{5} by -20.124e^{2}\sqrt{5}tuva^{2}+42.484e^{2}tuva^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}