Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{5^{2}-x^{2}}\right)^{2}=\left(\sqrt{6^{2}-\left(4-x\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{25-x^{2}}\right)^{2}=\left(\sqrt{6^{2}-\left(4-x\right)^{2}}\right)^{2}
Calculate 5 to the power of 2 and get 25.
25-x^{2}=\left(\sqrt{6^{2}-\left(4-x\right)^{2}}\right)^{2}
Calculate \sqrt{25-x^{2}} to the power of 2 and get 25-x^{2}.
25-x^{2}=\left(\sqrt{36-\left(4-x\right)^{2}}\right)^{2}
Calculate 6 to the power of 2 and get 36.
25-x^{2}=\left(\sqrt{36-\left(16-8x+x^{2}\right)}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
25-x^{2}=\left(\sqrt{36-16+8x-x^{2}}\right)^{2}
To find the opposite of 16-8x+x^{2}, find the opposite of each term.
25-x^{2}=\left(\sqrt{20+8x-x^{2}}\right)^{2}
Subtract 16 from 36 to get 20.
25-x^{2}=20+8x-x^{2}
Calculate \sqrt{20+8x-x^{2}} to the power of 2 and get 20+8x-x^{2}.
25-x^{2}-8x=20-x^{2}
Subtract 8x from both sides.
25-x^{2}-8x+x^{2}=20
Add x^{2} to both sides.
25-8x=20
Combine -x^{2} and x^{2} to get 0.
-8x=20-25
Subtract 25 from both sides.
-8x=-5
Subtract 25 from 20 to get -5.
x=\frac{-5}{-8}
Divide both sides by -8.
x=\frac{5}{8}
Fraction \frac{-5}{-8} can be simplified to \frac{5}{8} by removing the negative sign from both the numerator and the denominator.
\sqrt{5^{2}-\left(\frac{5}{8}\right)^{2}}=\sqrt{6^{2}-\left(4-\frac{5}{8}\right)^{2}}
Substitute \frac{5}{8} for x in the equation \sqrt{5^{2}-x^{2}}=\sqrt{6^{2}-\left(4-x\right)^{2}}.
\frac{15}{8}\times 7^{\frac{1}{2}}=\frac{15}{8}\times 7^{\frac{1}{2}}
Simplify. The value x=\frac{5}{8} satisfies the equation.
x=\frac{5}{8}
Equation \sqrt{25-x^{2}}=\sqrt{36-\left(4-x\right)^{2}} has a unique solution.