Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

7+\left(\sqrt{7}-2\right)^{2}+\frac{10-\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\sqrt{3}}
Calculate the square root of 49 and get 7.
7+\left(\sqrt{7}\right)^{2}-4\sqrt{7}+4+\frac{10-\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\sqrt{3}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-2\right)^{2}.
7+7-4\sqrt{7}+4+\frac{10-\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\sqrt{3}}
The square of \sqrt{7} is 7.
7+11-4\sqrt{7}+\frac{10-\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\sqrt{3}}
Add 7 and 4 to get 11.
18-4\sqrt{7}+\frac{10-\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\sqrt{3}}
Add 7 and 11 to get 18.
18-4\sqrt{7}+\frac{10-\left(\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-\sqrt{3}\right)^{2}.
18-4\sqrt{7}+\frac{10-\left(7-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}
The square of \sqrt{7} is 7.
18-4\sqrt{7}+\frac{10-\left(7-2\sqrt{21}+\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
18-4\sqrt{7}+\frac{10-\left(7-2\sqrt{21}+3\right)}{\sqrt{3}}
The square of \sqrt{3} is 3.
18-4\sqrt{7}+\frac{10-\left(10-2\sqrt{21}\right)}{\sqrt{3}}
Add 7 and 3 to get 10.
18-4\sqrt{7}+\frac{10-10+2\sqrt{21}}{\sqrt{3}}
To find the opposite of 10-2\sqrt{21}, find the opposite of each term.
18-4\sqrt{7}+\frac{2\sqrt{21}}{\sqrt{3}}
Subtract 10 from 10 to get 0.
18-4\sqrt{7}+\frac{2\sqrt{21}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{21}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
18-4\sqrt{7}+\frac{2\sqrt{21}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
18-4\sqrt{7}+\frac{2\sqrt{3}\sqrt{7}\sqrt{3}}{3}
Factor 21=3\times 7. Rewrite the square root of the product \sqrt{3\times 7} as the product of square roots \sqrt{3}\sqrt{7}.
18-4\sqrt{7}+\frac{2\times 3\sqrt{7}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
18-4\sqrt{7}+2\sqrt{7}
Cancel out 3 and 3.
18-2\sqrt{7}
Combine -4\sqrt{7} and 2\sqrt{7} to get -2\sqrt{7}.