Evaluate
\sqrt{6}-4\approx -1.550510257
Share
Copied to clipboard
\frac{4\sqrt{3}}{-\sqrt{3}}-\sqrt{\frac{1}{2}}\sqrt{12}+\sqrt{24}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{4\sqrt{3}}{-\sqrt{3}}-\frac{\sqrt{1}}{\sqrt{2}}\sqrt{12}+\sqrt{24}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{4\sqrt{3}}{-\sqrt{3}}-\frac{1}{\sqrt{2}}\sqrt{12}+\sqrt{24}
Calculate the square root of 1 and get 1.
\frac{4\sqrt{3}}{-\sqrt{3}}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{12}+\sqrt{24}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4\sqrt{3}}{-\sqrt{3}}-\frac{\sqrt{2}}{2}\sqrt{12}+\sqrt{24}
The square of \sqrt{2} is 2.
\frac{4\sqrt{3}}{-\sqrt{3}}-\frac{\sqrt{2}}{2}\times 2\sqrt{3}+\sqrt{24}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{4\sqrt{3}}{-\sqrt{3}}-\sqrt{2}\sqrt{3}+\sqrt{24}
Cancel out 2 and 2.
\frac{4\sqrt{3}}{-\sqrt{3}}-\sqrt{6}+\sqrt{24}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{4\sqrt{3}}{-\sqrt{3}}-\frac{\sqrt{6}\left(-\sqrt{3}\right)}{-\sqrt{3}}+\sqrt{24}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{-\sqrt{3}}{-\sqrt{3}}.
\frac{4\sqrt{3}-\sqrt{6}\left(-\sqrt{3}\right)}{-\sqrt{3}}+\sqrt{24}
Since \frac{4\sqrt{3}}{-\sqrt{3}} and \frac{\sqrt{6}\left(-\sqrt{3}\right)}{-\sqrt{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{4\sqrt{3}+3\sqrt{2}}{-\sqrt{3}}+\sqrt{24}
Do the multiplications in 4\sqrt{3}-\sqrt{6}\left(-\sqrt{3}\right).
\frac{4\sqrt{3}+3\sqrt{2}}{-\sqrt{3}}+2\sqrt{6}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{4\sqrt{3}+3\sqrt{2}}{-\sqrt{3}}+\frac{2\sqrt{6}\left(-\sqrt{3}\right)}{-\sqrt{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{6} times \frac{-\sqrt{3}}{-\sqrt{3}}.
\frac{4\sqrt{3}+3\sqrt{2}+2\sqrt{6}\left(-\sqrt{3}\right)}{-\sqrt{3}}
Since \frac{4\sqrt{3}+3\sqrt{2}}{-\sqrt{3}} and \frac{2\sqrt{6}\left(-\sqrt{3}\right)}{-\sqrt{3}} have the same denominator, add them by adding their numerators.
\frac{4\sqrt{3}+3\sqrt{2}-6\sqrt{2}}{-\sqrt{3}}
Do the multiplications in 4\sqrt{3}+3\sqrt{2}+2\sqrt{6}\left(-\sqrt{3}\right).
\frac{4\sqrt{3}-3\sqrt{2}}{-\sqrt{3}}
Do the calculations in 4\sqrt{3}+3\sqrt{2}-6\sqrt{2}.
\frac{\left(4\sqrt{3}-3\sqrt{2}\right)\sqrt{3}}{-\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{4\sqrt{3}-3\sqrt{2}}{-\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(4\sqrt{3}-3\sqrt{2}\right)\sqrt{3}}{-3}
The square of \sqrt{3} is 3.
\frac{4\left(\sqrt{3}\right)^{2}-3\sqrt{2}\sqrt{3}}{-3}
Use the distributive property to multiply 4\sqrt{3}-3\sqrt{2} by \sqrt{3}.
\frac{4\times 3-3\sqrt{2}\sqrt{3}}{-3}
The square of \sqrt{3} is 3.
\frac{12-3\sqrt{2}\sqrt{3}}{-3}
Multiply 4 and 3 to get 12.
\frac{12-3\sqrt{6}}{-3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-4+\sqrt{6}
Divide each term of 12-3\sqrt{6} by -3 to get -4+\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}