Evaluate
\sqrt{3}+4\approx 5.732050808
Share
Copied to clipboard
\sqrt{16}-\sqrt{\frac{1}{2}}\sqrt{54}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Rewrite the division of square roots \frac{\sqrt{48}}{\sqrt{3}} as the square root of the division \sqrt{\frac{48}{3}} and perform the division.
4-\sqrt{\frac{1}{2}}\sqrt{54}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Calculate the square root of 16 and get 4.
4-\frac{\sqrt{1}}{\sqrt{2}}\sqrt{54}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
4-\frac{1}{\sqrt{2}}\sqrt{54}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Calculate the square root of 1 and get 1.
4-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{54}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4-\frac{\sqrt{2}}{2}\sqrt{54}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
The square of \sqrt{2} is 2.
4-\frac{\sqrt{2}}{2}\times 3\sqrt{6}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
4-\frac{\sqrt{2}\times 3}{2}\sqrt{6}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Express \frac{\sqrt{2}}{2}\times 3 as a single fraction.
4-\frac{\sqrt{2}\times 3\sqrt{6}}{2}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Express \frac{\sqrt{2}\times 3}{2}\sqrt{6} as a single fraction.
4-\frac{\sqrt{2}\times 3\sqrt{2}\sqrt{3}}{2}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
4-\frac{2\times 3\sqrt{3}}{2}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
4-\frac{6\sqrt{3}}{2}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Multiply 2 and 3 to get 6.
4-3\sqrt{3}+\frac{\sqrt{24}}{\frac{\sqrt{2}}{2}}
Divide 6\sqrt{3} by 2 to get 3\sqrt{3}.
4-3\sqrt{3}+\frac{2\sqrt{6}}{\frac{\sqrt{2}}{2}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
4-3\sqrt{3}+\frac{2\sqrt{6}\times 2}{\sqrt{2}}
Divide 2\sqrt{6} by \frac{\sqrt{2}}{2} by multiplying 2\sqrt{6} by the reciprocal of \frac{\sqrt{2}}{2}.
4-3\sqrt{3}+\frac{2\sqrt{6}\times 2\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{6}\times 2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4-3\sqrt{3}+\frac{2\sqrt{6}\times 2\sqrt{2}}{2}
The square of \sqrt{2} is 2.
4-3\sqrt{3}+\frac{4\sqrt{6}\sqrt{2}}{2}
Multiply 2 and 2 to get 4.
4-3\sqrt{3}+\frac{4\sqrt{2}\sqrt{3}\sqrt{2}}{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
4-3\sqrt{3}+\frac{4\times 2\sqrt{3}}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
4-3\sqrt{3}+4\sqrt{3}
Cancel out 2 and 2.
4+\sqrt{3}
Combine -3\sqrt{3} and 4\sqrt{3} to get \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}