Skip to main content
Evaluate
Tick mark Image

Share

\sqrt{16}+2\sqrt{\frac{1}{5}}\sqrt{30}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
Rewrite the division of square roots \frac{\sqrt{48}}{\sqrt{3}} as the square root of the division \sqrt{\frac{48}{3}} and perform the division.
4+2\sqrt{\frac{1}{5}}\sqrt{30}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
Calculate the square root of 16 and get 4.
4+2\times \frac{\sqrt{1}}{\sqrt{5}}\sqrt{30}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
4+2\times \frac{1}{\sqrt{5}}\sqrt{30}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
Calculate the square root of 1 and get 1.
4+2\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{30}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
4+2\times \frac{\sqrt{5}}{5}\sqrt{30}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
The square of \sqrt{5} is 5.
4+\frac{2\sqrt{5}}{5}\sqrt{30}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
Express 2\times \frac{\sqrt{5}}{5} as a single fraction.
4+\frac{2\sqrt{5}\sqrt{30}}{5}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
Express \frac{2\sqrt{5}}{5}\sqrt{30} as a single fraction.
\frac{4\times 5}{5}+\frac{2\sqrt{5}\sqrt{30}}{5}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{5}{5}.
\frac{4\times 5+2\sqrt{5}\sqrt{30}}{5}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
Since \frac{4\times 5}{5} and \frac{2\sqrt{5}\sqrt{30}}{5} have the same denominator, add them by adding their numerators.
\frac{20+10\sqrt{6}}{5}-\left(2\sqrt{2}+\sqrt{3}\right)^{2}
Do the multiplications in 4\times 5+2\sqrt{5}\sqrt{30}.
\frac{20+10\sqrt{6}}{5}-\left(4\left(\sqrt{2}\right)^{2}+4\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{2}+\sqrt{3}\right)^{2}.
\frac{20+10\sqrt{6}}{5}-\left(4\times 2+4\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{2} is 2.
\frac{20+10\sqrt{6}}{5}-\left(8+4\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Multiply 4 and 2 to get 8.
\frac{20+10\sqrt{6}}{5}-\left(8+4\sqrt{6}+\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{20+10\sqrt{6}}{5}-\left(8+4\sqrt{6}+3\right)
The square of \sqrt{3} is 3.
\frac{20+10\sqrt{6}}{5}-\left(11+4\sqrt{6}\right)
Add 8 and 3 to get 11.
\frac{20+10\sqrt{6}}{5}-\frac{5\left(11+4\sqrt{6}\right)}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 11+4\sqrt{6} times \frac{5}{5}.
\frac{20+10\sqrt{6}-5\left(11+4\sqrt{6}\right)}{5}
Since \frac{20+10\sqrt{6}}{5} and \frac{5\left(11+4\sqrt{6}\right)}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{20+10\sqrt{6}-55-20\sqrt{6}}{5}
Do the multiplications in 20+10\sqrt{6}-5\left(11+4\sqrt{6}\right).
\frac{-35-10\sqrt{6}}{5}
Do the calculations in 20+10\sqrt{6}-55-20\sqrt{6}.
-7-2\sqrt{6}
Divide each term of -35-10\sqrt{6} by 5 to get -7-2\sqrt{6}.