Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\sqrt{3}+\sqrt{\frac{1}{8}}-2\sqrt{\frac{1}{3}}+\sqrt{18}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
4\sqrt{3}+\frac{\sqrt{1}}{\sqrt{8}}-2\sqrt{\frac{1}{3}}+\sqrt{18}
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
4\sqrt{3}+\frac{1}{\sqrt{8}}-2\sqrt{\frac{1}{3}}+\sqrt{18}
Calculate the square root of 1 and get 1.
4\sqrt{3}+\frac{1}{2\sqrt{2}}-2\sqrt{\frac{1}{3}}+\sqrt{18}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4\sqrt{3}+\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-2\sqrt{\frac{1}{3}}+\sqrt{18}
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4\sqrt{3}+\frac{\sqrt{2}}{2\times 2}-2\sqrt{\frac{1}{3}}+\sqrt{18}
The square of \sqrt{2} is 2.
4\sqrt{3}+\frac{\sqrt{2}}{4}-2\sqrt{\frac{1}{3}}+\sqrt{18}
Multiply 2 and 2 to get 4.
4\sqrt{3}+\frac{\sqrt{2}}{4}-2\times \frac{\sqrt{1}}{\sqrt{3}}+\sqrt{18}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
4\sqrt{3}+\frac{\sqrt{2}}{4}-2\times \frac{1}{\sqrt{3}}+\sqrt{18}
Calculate the square root of 1 and get 1.
4\sqrt{3}+\frac{\sqrt{2}}{4}-2\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{18}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\sqrt{3}+\frac{\sqrt{2}}{4}-2\times \frac{\sqrt{3}}{3}+\sqrt{18}
The square of \sqrt{3} is 3.
4\sqrt{3}+\frac{\sqrt{2}}{4}+\frac{-2\sqrt{3}}{3}+\sqrt{18}
Express -2\times \frac{\sqrt{3}}{3} as a single fraction.
4\sqrt{3}+\frac{\sqrt{2}}{4}+\frac{-2\sqrt{3}}{3}+3\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
4\sqrt{3}+\frac{13}{4}\sqrt{2}+\frac{-2\sqrt{3}}{3}
Combine \frac{\sqrt{2}}{4} and 3\sqrt{2} to get \frac{13}{4}\sqrt{2}.
\frac{10}{3}\sqrt{3}+\frac{13}{4}\sqrt{2}
Combine 4\sqrt{3} and \frac{-2\sqrt{3}}{3} to get \frac{10}{3}\sqrt{3}.