Evaluate
\frac{3\sqrt{5}}{2}\approx 3.354101966
Share
Copied to clipboard
\frac{3\sqrt{5}}{\sqrt{32}}\sqrt{8}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{3\sqrt{5}}{4\sqrt{2}}\sqrt{8}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{3\sqrt{5}\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}\sqrt{8}
Rationalize the denominator of \frac{3\sqrt{5}}{4\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{5}\sqrt{2}}{4\times 2}\sqrt{8}
The square of \sqrt{2} is 2.
\frac{3\sqrt{10}}{4\times 2}\sqrt{8}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{3\sqrt{10}}{8}\sqrt{8}
Multiply 4 and 2 to get 8.
\frac{3\sqrt{10}}{8}\times 2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{3\sqrt{10}}{4}\sqrt{2}
Cancel out 8, the greatest common factor in 2 and 8.
\frac{3\sqrt{10}\sqrt{2}}{4}
Express \frac{3\sqrt{10}}{4}\sqrt{2} as a single fraction.
\frac{3\sqrt{2}\sqrt{5}\sqrt{2}}{4}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{3\times 2\sqrt{5}}{4}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6\sqrt{5}}{4}
Multiply 3 and 2 to get 6.
\frac{3}{2}\sqrt{5}
Divide 6\sqrt{5} by 4 to get \frac{3}{2}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}