Evaluate
\frac{16\sqrt{3}}{33}+5\sqrt{17}-\frac{32}{11}\approx 18.546219429
Share
Copied to clipboard
5\sqrt{17}-\frac{8}{3+\sin(60)}
Factor 425=5^{2}\times 17. Rewrite the square root of the product \sqrt{5^{2}\times 17} as the product of square roots \sqrt{5^{2}}\sqrt{17}. Take the square root of 5^{2}.
5\sqrt{17}-\frac{8}{3+\frac{\sqrt{3}}{2}}
Get the value of \sin(60) from trigonometric values table.
5\sqrt{17}-\frac{8}{\frac{3\times 2}{2}+\frac{\sqrt{3}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
5\sqrt{17}-\frac{8}{\frac{3\times 2+\sqrt{3}}{2}}
Since \frac{3\times 2}{2} and \frac{\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
5\sqrt{17}-\frac{8}{\frac{6+\sqrt{3}}{2}}
Do the multiplications in 3\times 2+\sqrt{3}.
5\sqrt{17}-\frac{8\times 2}{6+\sqrt{3}}
Divide 8 by \frac{6+\sqrt{3}}{2} by multiplying 8 by the reciprocal of \frac{6+\sqrt{3}}{2}.
5\sqrt{17}-\frac{8\times 2\left(6-\sqrt{3}\right)}{\left(6+\sqrt{3}\right)\left(6-\sqrt{3}\right)}
Rationalize the denominator of \frac{8\times 2}{6+\sqrt{3}} by multiplying numerator and denominator by 6-\sqrt{3}.
5\sqrt{17}-\frac{8\times 2\left(6-\sqrt{3}\right)}{6^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(6+\sqrt{3}\right)\left(6-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5\sqrt{17}-\frac{8\times 2\left(6-\sqrt{3}\right)}{36-3}
Square 6. Square \sqrt{3}.
5\sqrt{17}-\frac{8\times 2\left(6-\sqrt{3}\right)}{33}
Subtract 3 from 36 to get 33.
5\sqrt{17}-\frac{16\left(6-\sqrt{3}\right)}{33}
Multiply 8 and 2 to get 16.
\frac{33\times 5\sqrt{17}}{33}-\frac{16\left(6-\sqrt{3}\right)}{33}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5\sqrt{17} times \frac{33}{33}.
\frac{33\times 5\sqrt{17}-16\left(6-\sqrt{3}\right)}{33}
Since \frac{33\times 5\sqrt{17}}{33} and \frac{16\left(6-\sqrt{3}\right)}{33} have the same denominator, subtract them by subtracting their numerators.
\frac{165\sqrt{17}-96+16\sqrt{3}}{33}
Do the multiplications in 33\times 5\sqrt{17}-16\left(6-\sqrt{3}\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}