Solve for y
y=20
y=4
Graph
Share
Copied to clipboard
\sqrt{4y+20}=6+\sqrt{y-4}
Subtract -\sqrt{y-4} from both sides of the equation.
\left(\sqrt{4y+20}\right)^{2}=\left(6+\sqrt{y-4}\right)^{2}
Square both sides of the equation.
4y+20=\left(6+\sqrt{y-4}\right)^{2}
Calculate \sqrt{4y+20} to the power of 2 and get 4y+20.
4y+20=36+12\sqrt{y-4}+\left(\sqrt{y-4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6+\sqrt{y-4}\right)^{2}.
4y+20=36+12\sqrt{y-4}+y-4
Calculate \sqrt{y-4} to the power of 2 and get y-4.
4y+20=32+12\sqrt{y-4}+y
Subtract 4 from 36 to get 32.
4y+20-\left(32+y\right)=12\sqrt{y-4}
Subtract 32+y from both sides of the equation.
4y+20-32-y=12\sqrt{y-4}
To find the opposite of 32+y, find the opposite of each term.
4y-12-y=12\sqrt{y-4}
Subtract 32 from 20 to get -12.
3y-12=12\sqrt{y-4}
Combine 4y and -y to get 3y.
\left(3y-12\right)^{2}=\left(12\sqrt{y-4}\right)^{2}
Square both sides of the equation.
9y^{2}-72y+144=\left(12\sqrt{y-4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3y-12\right)^{2}.
9y^{2}-72y+144=12^{2}\left(\sqrt{y-4}\right)^{2}
Expand \left(12\sqrt{y-4}\right)^{2}.
9y^{2}-72y+144=144\left(\sqrt{y-4}\right)^{2}
Calculate 12 to the power of 2 and get 144.
9y^{2}-72y+144=144\left(y-4\right)
Calculate \sqrt{y-4} to the power of 2 and get y-4.
9y^{2}-72y+144=144y-576
Use the distributive property to multiply 144 by y-4.
9y^{2}-72y+144-144y=-576
Subtract 144y from both sides.
9y^{2}-216y+144=-576
Combine -72y and -144y to get -216y.
9y^{2}-216y+144+576=0
Add 576 to both sides.
9y^{2}-216y+720=0
Add 144 and 576 to get 720.
y=\frac{-\left(-216\right)±\sqrt{\left(-216\right)^{2}-4\times 9\times 720}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -216 for b, and 720 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-216\right)±\sqrt{46656-4\times 9\times 720}}{2\times 9}
Square -216.
y=\frac{-\left(-216\right)±\sqrt{46656-36\times 720}}{2\times 9}
Multiply -4 times 9.
y=\frac{-\left(-216\right)±\sqrt{46656-25920}}{2\times 9}
Multiply -36 times 720.
y=\frac{-\left(-216\right)±\sqrt{20736}}{2\times 9}
Add 46656 to -25920.
y=\frac{-\left(-216\right)±144}{2\times 9}
Take the square root of 20736.
y=\frac{216±144}{2\times 9}
The opposite of -216 is 216.
y=\frac{216±144}{18}
Multiply 2 times 9.
y=\frac{360}{18}
Now solve the equation y=\frac{216±144}{18} when ± is plus. Add 216 to 144.
y=20
Divide 360 by 18.
y=\frac{72}{18}
Now solve the equation y=\frac{216±144}{18} when ± is minus. Subtract 144 from 216.
y=4
Divide 72 by 18.
y=20 y=4
The equation is now solved.
\sqrt{4\times 20+20}-\sqrt{20-4}=6
Substitute 20 for y in the equation \sqrt{4y+20}-\sqrt{y-4}=6.
6=6
Simplify. The value y=20 satisfies the equation.
\sqrt{4\times 4+20}-\sqrt{4-4}=6
Substitute 4 for y in the equation \sqrt{4y+20}-\sqrt{y-4}=6.
6=6
Simplify. The value y=4 satisfies the equation.
y=20 y=4
List all solutions of \sqrt{4y+20}=\sqrt{y-4}+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}