Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{4y+12}=6+\sqrt{y-6}
Subtract -\sqrt{y-6} from both sides of the equation.
\left(\sqrt{4y+12}\right)^{2}=\left(6+\sqrt{y-6}\right)^{2}
Square both sides of the equation.
4y+12=\left(6+\sqrt{y-6}\right)^{2}
Calculate \sqrt{4y+12} to the power of 2 and get 4y+12.
4y+12=36+12\sqrt{y-6}+\left(\sqrt{y-6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6+\sqrt{y-6}\right)^{2}.
4y+12=36+12\sqrt{y-6}+y-6
Calculate \sqrt{y-6} to the power of 2 and get y-6.
4y+12=30+12\sqrt{y-6}+y
Subtract 6 from 36 to get 30.
4y+12-\left(30+y\right)=12\sqrt{y-6}
Subtract 30+y from both sides of the equation.
4y+12-30-y=12\sqrt{y-6}
To find the opposite of 30+y, find the opposite of each term.
4y-18-y=12\sqrt{y-6}
Subtract 30 from 12 to get -18.
3y-18=12\sqrt{y-6}
Combine 4y and -y to get 3y.
\left(3y-18\right)^{2}=\left(12\sqrt{y-6}\right)^{2}
Square both sides of the equation.
9y^{2}-108y+324=\left(12\sqrt{y-6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3y-18\right)^{2}.
9y^{2}-108y+324=12^{2}\left(\sqrt{y-6}\right)^{2}
Expand \left(12\sqrt{y-6}\right)^{2}.
9y^{2}-108y+324=144\left(\sqrt{y-6}\right)^{2}
Calculate 12 to the power of 2 and get 144.
9y^{2}-108y+324=144\left(y-6\right)
Calculate \sqrt{y-6} to the power of 2 and get y-6.
9y^{2}-108y+324=144y-864
Use the distributive property to multiply 144 by y-6.
9y^{2}-108y+324-144y=-864
Subtract 144y from both sides.
9y^{2}-252y+324=-864
Combine -108y and -144y to get -252y.
9y^{2}-252y+324+864=0
Add 864 to both sides.
9y^{2}-252y+1188=0
Add 324 and 864 to get 1188.
y=\frac{-\left(-252\right)±\sqrt{\left(-252\right)^{2}-4\times 9\times 1188}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -252 for b, and 1188 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-252\right)±\sqrt{63504-4\times 9\times 1188}}{2\times 9}
Square -252.
y=\frac{-\left(-252\right)±\sqrt{63504-36\times 1188}}{2\times 9}
Multiply -4 times 9.
y=\frac{-\left(-252\right)±\sqrt{63504-42768}}{2\times 9}
Multiply -36 times 1188.
y=\frac{-\left(-252\right)±\sqrt{20736}}{2\times 9}
Add 63504 to -42768.
y=\frac{-\left(-252\right)±144}{2\times 9}
Take the square root of 20736.
y=\frac{252±144}{2\times 9}
The opposite of -252 is 252.
y=\frac{252±144}{18}
Multiply 2 times 9.
y=\frac{396}{18}
Now solve the equation y=\frac{252±144}{18} when ± is plus. Add 252 to 144.
y=22
Divide 396 by 18.
y=\frac{108}{18}
Now solve the equation y=\frac{252±144}{18} when ± is minus. Subtract 144 from 252.
y=6
Divide 108 by 18.
y=22 y=6
The equation is now solved.
\sqrt{4\times 22+12}-\sqrt{22-6}=6
Substitute 22 for y in the equation \sqrt{4y+12}-\sqrt{y-6}=6.
6=6
Simplify. The value y=22 satisfies the equation.
\sqrt{4\times 6+12}-\sqrt{6-6}=6
Substitute 6 for y in the equation \sqrt{4y+12}-\sqrt{y-6}=6.
6=6
Simplify. The value y=6 satisfies the equation.
y=22 y=6
List all solutions of \sqrt{4y+12}=\sqrt{y-6}+6.